找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna Theory, Normal Families, and Algebraic Differential Equations; Norbert Steinmetz Textbook 2017 Springer International Publishin

[復(fù)制鏈接]
樓主: Johnson
21#
發(fā)表于 2025-3-25 03:58:43 | 只看該作者
0172-5939 tial equations, and 2D Hamiltonian systems.Presents applicatThis book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations..Following a comprehensive treatment of Ne
22#
發(fā)表于 2025-3-25 10:10:10 | 只看該作者
Selected Applications of Nevanlinna Theory,xford, 1964), Laine?(Nevanlinna theory and complex differential equations. De Gruyter studies in mathematics, vol 15. De Gruyter, Boston, 1993), and Wittich?(Neuere Untersuchungen über eindeutige Analytische Funktionen. Springer, Berlin, 1968), nevertheless we will present the basic results in the first section.
23#
發(fā)表于 2025-3-25 12:41:58 | 只看該作者
Textbook 2017ic series, and algebraic differential equations..Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are link
24#
發(fā)表于 2025-3-25 16:30:35 | 只看該作者
Algebraic Differential Equations,-free regions, asymptotic expansions on pole-free regions, and solutions deviating from the ‘generic’ case. This program will be pursued in the subsequent sections on linear, Riccati, and implicit first-order differential equations.
25#
發(fā)表于 2025-3-25 22:36:15 | 只看該作者
Higher-Order Algebraic Differential Equations,d asymptotic expansions on pole-free regions, and characterising the so-called sub-normal solutions. As in the preceding chapter, a crucial role is played by the method of Yosida Re-scaling. It establishes the central discovery that the first, second, and fourth Painlevé transcendents belong to the Yosida classes ., ., ., respectively.
26#
發(fā)表于 2025-3-26 02:20:27 | 只看該作者
27#
發(fā)表于 2025-3-26 06:42:35 | 只看該作者
28#
發(fā)表于 2025-3-26 10:23:43 | 只看該作者
29#
發(fā)表于 2025-3-26 14:24:50 | 只看該作者
30#
發(fā)表于 2025-3-26 19:04:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁怀市| 磴口县| 疏勒县| 凯里市| 城口县| 华坪县| 临洮县| 崇信县| 克什克腾旗| 丰县| 潢川县| 平谷区| 贵定县| 四平市| 恩施市| 通辽市| 柞水县| 聂荣县| 涟源市| 弥勒县| 巫山县| 巨鹿县| 鹤庆县| 汤阴县| 朝阳县| 屯昌县| 龙口市| 定日县| 金秀| 忻州市| 仪陇县| 富锦市| 耒阳市| 海阳市| 景德镇市| 汉沽区| 怀安县| 南华县| 辉县市| 佳木斯市| 沙田区|