找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna Theory; Kunihiko Kodaira Book 2017 The Author(s) 2017 Schwarz--Kobayashi’s lemma.hyperbolic measure.first main theorem.second m

[復(fù)制鏈接]
查看: 19484|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:05:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nevanlinna Theory
編輯Kunihiko Kodaira
視頻videohttp://file.papertrans.cn/665/664718/664718.mp4
概述Highly recommendable as a comprehensive introduction to the modern Nevanlinna theory.The last chapter is closely related to Kodaira’s remarkable last paper.Recently, this lecture note was cited as a r
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Nevanlinna Theory;  Kunihiko Kodaira Book 2017 The Author(s) 2017 Schwarz--Kobayashi’s lemma.hyperbolic measure.first main theorem.second m
描述This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from .C. to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira‘s unique approach to basic questions on complex manifolds.
出版日期Book 2017
關(guān)鍵詞Schwarz--Kobayashi’s lemma; hyperbolic measure; first main theorem; second main theorem; Bieberbach’s ex
版次1
doihttps://doi.org/10.1007/978-981-10-6787-7
isbn_softcover978-981-10-6786-0
isbn_ebook978-981-10-6787-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2017
The information of publication is updating

書目名稱Nevanlinna Theory影響因子(影響力)




書目名稱Nevanlinna Theory影響因子(影響力)學(xué)科排名




書目名稱Nevanlinna Theory網(wǎng)絡(luò)公開度




書目名稱Nevanlinna Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nevanlinna Theory被引頻次




書目名稱Nevanlinna Theory被引頻次學(xué)科排名




書目名稱Nevanlinna Theory年度引用




書目名稱Nevanlinna Theory年度引用學(xué)科排名




書目名稱Nevanlinna Theory讀者反饋




書目名稱Nevanlinna Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:31:37 | 只看該作者
地板
發(fā)表于 2025-3-22 07:08:17 | 只看該作者
5#
發(fā)表于 2025-3-22 12:36:47 | 只看該作者
Nevanlinna Theory of Several Variables,Holomorphic maps from . to compact complex manifolds are studied.
6#
發(fā)表于 2025-3-22 14:26:10 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/n/image/664718.jpg
7#
發(fā)表于 2025-3-22 19:55:41 | 只看該作者
https://doi.org/10.1007/978-981-10-6787-7Schwarz--Kobayashi’s lemma; hyperbolic measure; first main theorem; second main theorem; Bieberbach’s ex
8#
發(fā)表于 2025-3-22 23:18:43 | 只看該作者
Nevanlinna Theory978-981-10-6787-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
9#
發(fā)表于 2025-3-23 03:34:03 | 只看該作者
Kunihiko KodairaHighly recommendable as a comprehensive introduction to the modern Nevanlinna theory.The last chapter is closely related to Kodaira’s remarkable last paper.Recently, this lecture note was cited as a r
10#
發(fā)表于 2025-3-23 08:17:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华阴市| 璧山县| 邢台市| 泽普县| 丹棱县| 民权县| 新安县| 高碑店市| 丹东市| 扬中市| 桓台县| 游戏| 封丘县| 房产| 九江县| 沙田区| 海南省| 彰化县| 资兴市| 绥德县| 宜春市| 神木县| 休宁县| 修文县| 沅江市| 包头市| 绥江县| 西宁市| 依安县| 汤阴县| 灵宝市| 绵阳市| 曲水县| 盐源县| 区。| 丹东市| 乌兰浩特市| 普陀区| 泌阳县| 新化县| 泰和县|