找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neuromorphic Cognitive Systems; A Learning and Memor Qiang Yu,Huajin Tang,Kay‘Tan Chen Book 2017 Springer International Publishing AG 2017

[復(fù)制鏈接]
樓主: Disclose
11#
發(fā)表于 2025-3-23 11:32:02 | 只看該作者
A Hierarchically Organized Memory Model with Temporal Population Coding,tive memory within gamma cycles. Moreover, temporally separated patterns can be linked and compressed via enhanced connections among neural groups forming episodic memory. Our model provides a computational interpretation of memory organization at a system level.
12#
發(fā)表于 2025-3-23 15:38:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:45:25 | 只看該作者
14#
發(fā)表于 2025-3-23 23:19:03 | 只看該作者
Rapid Feedforward Computation by Temporal Encoding and Learning with Spiking Neurons,nified and consistent feedforward system network with a proper encoding scheme and supervised temporal rules is built for processing real-world stimuli. The temporal rules are used for processing the spatiotemporal patterns. To utilize these rules on images or sounds, a proper encoding method and a
15#
發(fā)表于 2025-3-24 05:30:40 | 只看該作者
A Spike-Timing Based Integrated Model for Pattern Recognition,issue of pattern recognition involving computational process from sensory encoding to synaptic learning remains underexplored, as most existing models or algorithms only target part of the computational process. Furthermore, many learning algorithms proposed in literature neglect or pay little atten
16#
發(fā)表于 2025-3-24 08:03:52 | 只看該作者
17#
發(fā)表于 2025-3-24 13:28:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:55:22 | 只看該作者
Temporal Learning in Multilayer Spiking Neural Networks Through Construction of Causal Connections,n the network for the construction of causal connections. Synaptic efficacies are finely tuned for resulting in a desired post-synaptic firing status. Both the PSD rule and the tempotron rule are extended to multiple layers, leading to new rules of multilayer PSD (MutPSD) and multilayer tempotron (M
19#
發(fā)表于 2025-3-24 22:11:02 | 只看該作者
A Hierarchically Organized Memory Model with Temporal Population Coding,organizing principles of memory systems remain unclear. Emerging experiment results show that memories are represented by population of neurons and organized in a categorical and hierarchical manner. In this work, we describe a hierarchically organized memory (HOM) model using spiking neurons, in wh
20#
發(fā)表于 2025-3-25 02:31:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花垣县| 南投县| 凤山市| 兴文县| 平罗县| 怀宁县| 梁河县| 达拉特旗| 吴忠市| 繁昌县| 石首市| 石台县| 湘西| 霍林郭勒市| 霍城县| 蒲江县| 庆安县| 汪清县| 东乡| 汶川县| 大同市| 开阳县| 扎兰屯市| 隆子县| 临邑县| 开远市| 启东市| 新宁县| 库尔勒市| 长汀县| 盈江县| 伊吾县| 克山县| 寿光市| 水富县| 台江县| 荥经县| 应城市| 浦江县| 二连浩特市| 友谊县|