找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neuroimaging of Consciousness; Andrea Eugenio Cavanna,Andrea Nani,Steven Laureys Book 2013 Springer-Verlag Berlin Heidelberg 2013 Coma.Con

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
11#
發(fā)表于 2025-3-23 11:12:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:27:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:38 | 只看該作者
Sarah N. Garfinkel,Yoko Nagai,Anil K. Seth,Hugo D. Critchleydely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
15#
發(fā)表于 2025-3-24 03:16:42 | 只看該作者
Alan Carson,Mark Edwards,Jon Stonedely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
16#
發(fā)表于 2025-3-24 07:09:57 | 只看該作者
Andrea Nani,Andrea E. Cavannained area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Mos
17#
發(fā)表于 2025-3-24 12:46:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:47 | 只看該作者
Vincent Bonhomme,Pierre Boveroux,Jean Fran?ois Brichant at the end of each chapter that vary greatly in the level of difficulty...Kehe Zhu is Professor of Mathematics at State University of New York at Albany. His previous books include Operator Theory in Function Spaces (Marcel Dekk978-1-4419-1961-8978-0-387-27539-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
20#
發(fā)表于 2025-3-25 03:11:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象山县| 渭源县| 邵阳县| 剑川县| 堆龙德庆县| 新干县| 扎囊县| 崇阳县| 定陶县| 平原县| 威宁| 娄底市| 锦州市| 新野县| 鹤岗市| 临西县| 临夏市| 姜堰市| 灵台县| 若羌县| 襄城县| 巩留县| 五河县| 若尔盖县| 肥东县| 丰原市| 温泉县| 区。| 邻水| 成安县| 依兰县| 方山县| 丹寨县| 嘉义市| 深州市| 辰溪县| 屯门区| 长宁区| 河南省| 苏州市| 山东省|