找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neuroimaging of Consciousness; Andrea Eugenio Cavanna,Andrea Nani,Steven Laureys Book 2013 Springer-Verlag Berlin Heidelberg 2013 Coma.Con

[復制鏈接]
樓主: 轉變
11#
發(fā)表于 2025-3-23 11:12:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:27:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:38 | 只看該作者
Sarah N. Garfinkel,Yoko Nagai,Anil K. Seth,Hugo D. Critchleydely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
15#
發(fā)表于 2025-3-24 03:16:42 | 只看該作者
Alan Carson,Mark Edwards,Jon Stonedely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
16#
發(fā)表于 2025-3-24 07:09:57 | 只看該作者
Andrea Nani,Andrea E. Cavannained area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Mos
17#
發(fā)表于 2025-3-24 12:46:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:47 | 只看該作者
Vincent Bonhomme,Pierre Boveroux,Jean Fran?ois Brichant at the end of each chapter that vary greatly in the level of difficulty...Kehe Zhu is Professor of Mathematics at State University of New York at Albany. His previous books include Operator Theory in Function Spaces (Marcel Dekk978-1-4419-1961-8978-0-387-27539-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
20#
發(fā)表于 2025-3-25 03:11:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云安县| 合山市| 纳雍县| 师宗县| 横山县| 华亭县| 克什克腾旗| 通州市| 广汉市| 平度市| 遵化市| 武邑县| 聂荣县| 休宁县| 贵南县| 龙海市| 昌江| 仙居县| 吴忠市| 永修县| 高台县| 专栏| 西乌珠穆沁旗| 金寨县| 黄龙县| 五常市| 神农架林区| 满洲里市| 宁城县| 临武县| 惠来县| 浏阳市| 兰考县| 老河口市| 自贡市| 申扎县| 南皮县| 嵊州市| 郑州市| 胶南市| 平潭县|