找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neurocomputation in Remote Sensing Data Analysis; Proceedings of Conce Ioannis Kanellopoulos,Graeme G. Wilkinson (Head),J Conference procee

[復(fù)制鏈接]
樓主: 異國(guó)
41#
發(fā)表于 2025-3-28 15:30:00 | 只看該作者
Neural Networks for Classification of Ice Type Concentration from ERS-1 SAR Images,es. It includes a short review of earlier used techniques, implementation of different neural networks and results from various experiments with these networks. The estimation of ice type concentrations from Synthetic Aperture Radar (SAR) images has been investigated for several years, see e.g. [9].
42#
發(fā)表于 2025-3-28 19:33:43 | 只看該作者
A Neural Network Approach to Spectral Mixture Analysis,ry is present in a single pixel. In spectral mixture analysis the fractions of the ground cover categories present in a pixel are determined, assuming a linear mixture model. In this paper neural network methods which are able to perform this analysis are considered. Methods for the construction of
43#
發(fā)表于 2025-3-29 01:42:51 | 只看該作者
44#
發(fā)表于 2025-3-29 04:08:07 | 只看該作者
Feature Extraction for Neural Network Classifiers,extraction methods are reviewed, including principal component analysis, discriminant analysis, and the recently proposed decision boundary feature extraction method. The feature extraction methods are then applied in experiments in conjunction with classification by multilayer neural networks. The
45#
發(fā)表于 2025-3-29 09:50:02 | 只看該作者
Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size,ification algorithms tend to perform poorly in this context. This is because urban areas comprise a complex spatial assemblage of disparate land cover types - including built structures, numerous vegetation types, bare soil and water bodies. Thus, there is a need for more powerful spectral pattern r
46#
發(fā)表于 2025-3-29 14:47:54 | 只看該作者
Comparison and Combination of Statistical and Neural Network Algorithms for Remote-Sensing Image Cletworks performances with the ones of classical statistical methods. These experimental comparisons pointed out that no single classification algorithm can be regarded as a “panacea”. The superiority of one algorithm over the other strongly depends on the selected data set and on the efforts devoted
47#
發(fā)表于 2025-3-29 16:07:41 | 只看該作者
48#
發(fā)表于 2025-3-29 20:30:39 | 只看該作者
49#
發(fā)表于 2025-3-30 00:07:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:12:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙口市| 沭阳县| 镇巴县| 尉氏县| 孟州市| 泌阳县| 龙游县| 鄂托克前旗| 临沂市| 马龙县| 锦屏县| 弥勒县| 井研县| 剑河县| 铜梁县| 林周县| 泸定县| 惠州市| 都安| 海淀区| 松潘县| 兴安盟| 古浪县| 三台县| 凤台县| 盱眙县| 和静县| 郎溪县| 喀什市| 明溪县| 舞钢市| 武清区| 英山县| 中山市| 松江区| 临湘市| 上林县| 彭山县| 长白| 宁波市| 揭西县|