找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural-Symbolic Cognitive Reasoning; Artur S. d’Avila Garcez,Luís C. Lamb,Dov M. Gabbay Textbook 2009 Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: 拖累
21#
發(fā)表于 2025-3-25 05:20:32 | 只看該作者
Reasoning about Probabilities in Neural Networks,lly, the combination of knowledge, time, and probability in a connectionist system provides support for integrated knowledge representation and learning in a distributed environment, dealing with the various dimensions of reasoning of an idealised agent [94, 202].
22#
發(fā)表于 2025-3-25 07:40:48 | 只看該作者
Conclusions,ational models with integrated reasoning and learning capability, in which neural networks provide the machinery necessary for cognitive computation and learning, while logic provides practical reasoning and explanation capabilities to the neural models, facilitating the necessary interaction with the outside world.
23#
發(fā)表于 2025-3-25 15:05:29 | 只看該作者
1611-2482 , slow as it is, is faster than any artificial intelligence system. Are we faster because of the way we perceive knowledge as opposed to the way we represent it? ...The authors address this question by presenting neural network models that integrate the two most fundamental phenomena of cognition: o
24#
發(fā)表于 2025-3-25 16:39:06 | 只看該作者
Applications of Connectionist Nonclassical Reasoning,compares the CML representation of a distributed knowledge representation problem with the representation of the same problem in connectionist intuitionistic logic (CIL), the type of reasoning presented in Chap. 7. We begin with a simple card game, as described in [87].
25#
發(fā)表于 2025-3-25 23:49:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:57:16 | 只看該作者
Neural-Symbolic Learning Systems,nd knowledge. They did so by comparing the performance of KBANN with other hybrid, neural, and purely symbolic inductive learning systems (see [159, 189] for a comprehensive description of a number of symbolic inductive learning systems, including inductive logic programming systems).
27#
發(fā)表于 2025-3-26 07:04:42 | 只看該作者
28#
發(fā)表于 2025-3-26 10:55:16 | 只看該作者
Connectionist Intuitionistic Reasoning,l, the neural networks can be trained from examples to adapt to new situations using standard neural learning algorithms, thus providing a unifying foundation for intuitionistic reasoning, knowledge representation, and learning.
29#
發(fā)表于 2025-3-26 13:06:57 | 只看該作者
Argumentation Frameworks as Neural Networks,lthough symbolic logic-based models have been the standard for the representation of argumentative reasoning [31, 108], such models are intrinsically related to artificial neural networks, as we shall show in this chapter.
30#
發(fā)表于 2025-3-26 17:53:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 05:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲麻莱县| 定西市| 马尔康县| 华容县| 武邑县| 新建县| 茂名市| 行唐县| 陆河县| 宣恩县| 博客| 龙口市| 沾化县| 敦化市| 本溪市| 合阳县| 永新县| 彰化县| 老河口市| 新宾| 新野县| 闽清县| 西宁市| 绍兴市| 屯门区| 青田县| 杨浦区| 江永县| 独山县| 西青区| 类乌齐县| 泗洪县| 龙岩市| 西昌市| 舞钢市| 永丰县| 定襄县| 梨树县| 宿州市| 甘孜| 隆回县|