找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Text-to-Speech Synthesis; Xu Tan Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nat

[復(fù)制鏈接]
樓主: 帳簿
11#
發(fā)表于 2025-3-23 11:24:24 | 只看該作者
Xu Tanticles. Some journals/authors provide data sets upon request or are readily available on the web. Other empirical examples are given in Lott and Ray (1992) and Berndt (1991). Finally I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng and Kiseok Nam who solved several of these exercises.
12#
發(fā)表于 2025-3-23 14:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:42:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:04 | 只看該作者
Xu Tanticles. Some journals/authors provide data sets upon request or are readily available on the web. Other empirical examples are given in Lott and Ray (1992) and Berndt (1991). Finally I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng and Kiseok Nam who solved several of these exercises.
17#
發(fā)表于 2025-3-24 14:18:42 | 只看該作者
Book 2023earning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend...This book first introduces the history of TTS t
18#
發(fā)表于 2025-3-24 17:00:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:15:56 | 只看該作者
Data-Efficient TTSwith low data resources: (1) language level, where there lack of training data when we want to build TTS models for a language, and (2) speaker level, where there lack of training data when we want to build TTS models for a speaker. Thus, we mainly introduce data-efficient TTS methods from the two scenarios in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大英县| 克什克腾旗| 屏山县| 景洪市| 合川市| 英超| 威海市| 西藏| 百色市| 泰兴市| 九台市| 陇西县| 米易县| 龙游县| 安多县| 织金县| 义马市| 固阳县| 吴旗县| 中牟县| 开原市| 石泉县| 宁化县| 贺州市| 安多县| 许昌市| 西藏| 卢龙县| 南宁市| 广西| 托克托县| 老河口市| 托克托县| 浙江省| 肇州县| 寻乌县| 湘乡市| 沙洋县| 四川省| 西吉县| 宣化县|