找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Text-to-Speech Synthesis; Xu Tan Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nat

[復(fù)制鏈接]
樓主: 帳簿
11#
發(fā)表于 2025-3-23 11:24:24 | 只看該作者
Xu Tanticles. Some journals/authors provide data sets upon request or are readily available on the web. Other empirical examples are given in Lott and Ray (1992) and Berndt (1991). Finally I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng and Kiseok Nam who solved several of these exercises.
12#
發(fā)表于 2025-3-23 14:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:42:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:04 | 只看該作者
Xu Tanticles. Some journals/authors provide data sets upon request or are readily available on the web. Other empirical examples are given in Lott and Ray (1992) and Berndt (1991). Finally I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng and Kiseok Nam who solved several of these exercises.
17#
發(fā)表于 2025-3-24 14:18:42 | 只看該作者
Book 2023earning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend...This book first introduces the history of TTS t
18#
發(fā)表于 2025-3-24 17:00:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:15:56 | 只看該作者
Data-Efficient TTSwith low data resources: (1) language level, where there lack of training data when we want to build TTS models for a language, and (2) speaker level, where there lack of training data when we want to build TTS models for a speaker. Thus, we mainly introduce data-efficient TTS methods from the two scenarios in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 22:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西充县| 辛集市| 油尖旺区| 黄山市| 深水埗区| 乃东县| 醴陵市| 荔波县| 唐海县| 郸城县| 通化市| 宁陵县| 积石山| 唐河县| 方正县| 惠州市| 潞城市| 上思县| 萍乡市| 周至县| 天台县| 兴安县| 策勒县| 建昌县| 九龙坡区| 科技| 黄浦区| 和平县| 西昌市| 绥滨县| 宜昌市| 丰都县| 卢氏县| 霍林郭勒市| 皮山县| 赫章县| 罗江县| 阳山县| 新郑市| 平潭县| 襄樊市|