找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks: Tricks of the Trade; Grégoire Montavon,Geneviève B. Orr,Klaus-Robert Mü Book 2012Latest edition Springer-Verlag Berlin He

[復(fù)制鏈接]
查看: 54635|回復(fù): 60
樓主
發(fā)表于 2025-3-21 18:03:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Networks: Tricks of the Trade
編輯Grégoire Montavon,Geneviève B. Orr,Klaus-Robert Mü
視頻videohttp://file.papertrans.cn/664/663731/663731.mp4
概述The second edition of the book "reloads" the first edition with more tricks.Provides a timely snapshot of tricks, theory and algorithms that are of use
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Networks: Tricks of the Trade;  Grégoire Montavon,Geneviève B. Orr,Klaus-Robert Mü Book 2012Latest edition Springer-Verlag Berlin He
描述.The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines..The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world‘s most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems..
出版日期Book 2012Latest edition
關(guān)鍵詞back-propagation; graphics processing unit; multilayer perceptron; neural reinforcement learning; optimi
版次2
doihttps://doi.org/10.1007/978-3-642-35289-8
isbn_softcover978-3-642-35288-1
isbn_ebook978-3-642-35289-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Neural Networks: Tricks of the Trade影響因子(影響力)




書目名稱Neural Networks: Tricks of the Trade影響因子(影響力)學(xué)科排名




書目名稱Neural Networks: Tricks of the Trade網(wǎng)絡(luò)公開度




書目名稱Neural Networks: Tricks of the Trade網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Networks: Tricks of the Trade被引頻次




書目名稱Neural Networks: Tricks of the Trade被引頻次學(xué)科排名




書目名稱Neural Networks: Tricks of the Trade年度引用




書目名稱Neural Networks: Tricks of the Trade年度引用學(xué)科排名




書目名稱Neural Networks: Tricks of the Trade讀者反饋




書目名稱Neural Networks: Tricks of the Trade讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:59 | 只看該作者
Speeding Learning since the time BP was first introduced, BP is still the most widely used learning algorithm.The reason for this is its simplicity, efficiency, and its general effectiveness on a wide range of problems. Even so, there are many pitfalls in applying it, which is where all these tricks enter.
板凳
發(fā)表于 2025-3-22 04:18:02 | 只看該作者
Early Stopping — But When? 12 problems and 24 different network architectures I conclude slower stopping criteria allow for small improvements in generalization (here: about 4% on average), but cost much more training time (here: about factor 4 longer on average).
地板
發(fā)表于 2025-3-22 05:06:37 | 只看該作者
A Simple Trick for Estimating the Weight Decay Parametermator for the optimal weight decay parameter value as the standard search estimate, but orders of magnitude quicker to compute..The results also show that weight decay can produce solutions that are significantly superior to committees of networks trained with early stopping.
5#
發(fā)表于 2025-3-22 10:50:48 | 只看該作者
Centering Neural Network Gradient Factorsated error; this improves credit assignment in networks with shortcut connections. Benchmark results show that this can speed up learning significantly without adversely affecting the trained network’s generalization ability.
6#
發(fā)表于 2025-3-22 16:00:01 | 只看該作者
7#
發(fā)表于 2025-3-22 19:00:55 | 只看該作者
8#
發(fā)表于 2025-3-22 22:47:23 | 只看該作者
9#
發(fā)表于 2025-3-23 01:28:22 | 只看該作者
Efficient BackPropations of why they work..Many authors have suggested that second-order optimization methods are advantageous for neural net training. It is shown that most “classical” second-order methods are impractical for large neural networks. A few methods are proposed that do not have these limitations.
10#
發(fā)表于 2025-3-23 09:34:49 | 只看該作者
Large Ensemble Averaginghoices of synaptic weights. We find that the optimal stopping criterion for large ensembles occurs later in training time than for single networks. We test our method on the suspots data set and obtain excellent results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰西县| 灵宝市| 浑源县| 平舆县| 姚安县| 莲花县| 长宁区| 临漳县| 玛沁县| 西峡县| 辽宁省| 密山市| 和田县| 德阳市| 柘城县| 周至县| 博罗县| 荆门市| 睢宁县| 海晏县| 梁平县| 宁都县| 高阳县| 宁陵县| 吉隆县| 疏勒县| 昭平县| 孟村| 平顶山市| 红安县| 德安县| 资阳市| 敦化市| 白水县| 紫云| 正蓝旗| 靖江市| 肇源县| 绩溪县| 临江市| 威宁|