找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks: Tricks of the Trade; Genevieve B. Orr,Klaus-Robert Müller Book 19981st edition Springer-Verlag Berlin Heidelberg 1998 Art

[復(fù)制鏈接]
樓主: 投降
31#
發(fā)表于 2025-3-26 21:56:27 | 只看該作者
Adaptive Regularization in Neural Network Modelings an extended version of the recently presented algorithm [.]. The idea is to minimize an empirical estimate - like the cross-validation estimate - of the generalization error with respect to regularization parameters. This is done by employing a simple iterative gradient descent scheme using virtua
32#
發(fā)表于 2025-3-27 04:01:04 | 只看該作者
33#
發(fā)表于 2025-3-27 08:54:16 | 只看該作者
Square Unit Augmented Radially Extended Multilayer Perceptronswork with values set to the square of the first . inputs, properties reminiscent of higher-order neural networks and radial basis function networks (RBFN) are added to the architecture with little added expense in terms of weight requirements. Of particular interest, this architecture has the abilit
34#
發(fā)表于 2025-3-27 09:27:03 | 只看該作者
A Dozen Tricks with Multitask Learningning signals of other . tasks. It does this by learning the extra tasks in parallel with the main task while using a shared representation; what is learned for each task can help other tasks be learned better. This chapter describes a dozen opportunities for applying multitask learning in real probl
35#
發(fā)表于 2025-3-27 15:34:01 | 只看該作者
Solving the Ill-Conditioning in Neural Network Learnings is shown to be the result of the structure of the network. Also, the well-known problem that weights between ‘higher’ layers in the network have to settle before ‘lower’ weights can converge is addressed. We present a solution to these problems by modifying the structure of the network through the
36#
發(fā)表于 2025-3-27 18:00:30 | 只看該作者
37#
發(fā)表于 2025-3-28 00:47:59 | 只看該作者
38#
發(fā)表于 2025-3-28 02:14:47 | 只看該作者
Transformation Invariance in Pattern Recognition — Tangent Distance and Tangent Propagationnd computational resources are unlimited, even trivial algorithms will converge to the optimal solution. However, in the practical case, given limited data and other resources, satisfactory performance requires sophisticated methods to regularize the problem by introducing . knowledge. Invariance of
39#
發(fā)表于 2025-3-28 07:04:32 | 只看該作者
Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in td urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of hand-printed English text, for a recognizer shipping in new models of Apple Computer’s Newton MessagePad? and eMate?. Combining an artificial neural netwo
40#
發(fā)表于 2025-3-28 12:05:21 | 只看該作者
Neural Network Classification and Prior Class Probabilities - if the number of training examples that correspond to each class varies significantly between the classes, then it may be harder for the network to learn the rarer classes in some cases. Such practical experience does not match theoretical results which show that MLPs approximate Bayesian . proba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍南县| 盐城市| 营山县| 罗源县| 香格里拉县| 阳城县| 滕州市| 丰顺县| 水城县| 石楼县| 东丰县| 鲁甸县| 承德县| 蒙自县| 萍乡市| 宁晋县| 江津市| 巴林左旗| 西平县| 吴堡县| 巫山县| 柘荣县| 肥东县| 河西区| 班玛县| 兰溪市| 自治县| 尤溪县| 潮州市| 南充市| 通道| 金平| 东阳市| 海门市| 富民县| 古蔺县| 黄龙县| 泰来县| 文登市| 常宁市| 湖南省|