找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks and Deep Learning; A Textbook Charu C. Aggarwal Textbook 2023Latest edition Springer Nature Switzerland AG 2023 Neural netw

[復(fù)制鏈接]
查看: 54180|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:50:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Neural Networks and Deep Learning
副標(biāo)題A Textbook
編輯Charu C. Aggarwal
視頻videohttp://file.papertrans.cn/664/663703/663703.mp4
概述Simple and intuitive discussions of neural networks and deep learning.Provides mathematical details without losing the reader in complexity.Includes exercises and examples.Discusses both traditional n
圖書(shū)封面Titlebook: Neural Networks and Deep Learning; A Textbook Charu C. Aggarwal Textbook 2023Latest edition Springer Nature Switzerland AG 2023 Neural netw
描述.This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems.?Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:.?.The basics of neural networks:.?The backpropagation algorithm is discussed in Chapter 2..Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regressio
出版日期Textbook 2023Latest edition
關(guān)鍵詞Neural networks; Deep Learning; Machine Learning; Artificial Intelligence; Transformers; Pre-Trained Lang
版次2
doihttps://doi.org/10.1007/978-3-031-29642-0
isbn_softcover978-3-031-29644-4
isbn_ebook978-3-031-29642-0
copyrightSpringer Nature Switzerland AG 2023
The information of publication is updating

書(shū)目名稱Neural Networks and Deep Learning影響因子(影響力)




書(shū)目名稱Neural Networks and Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Neural Networks and Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Neural Networks and Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Neural Networks and Deep Learning被引頻次




書(shū)目名稱Neural Networks and Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Neural Networks and Deep Learning年度引用




書(shū)目名稱Neural Networks and Deep Learning年度引用學(xué)科排名




書(shū)目名稱Neural Networks and Deep Learning讀者反饋




書(shū)目名稱Neural Networks and Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:21 | 只看該作者
Restricted Boltzmann Machines, mapping networks where a set of inputs is mapped to a set of outputs. On the other hand, RBMs are networks in which the probabilistic states of a network are learned for a set of inputs, which is useful for . modeling.
板凳
發(fā)表于 2025-3-22 02:34:34 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:06 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:24 | 只看該作者
http://image.papertrans.cn/n/image/663703.jpg
6#
發(fā)表于 2025-3-22 16:37:48 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:52 | 只看該作者
The Backpropagation Algorithm,This chapter will introduce the backpropagation algorithm, which is the key to learning in multilayer neural networks. In the early years, methods for training multilayer networks were not known, primarily because of the unfamiliarity of the computer science community with ideas that were used quite frequently in control theory [., .].
8#
發(fā)表于 2025-3-22 21:57:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:17:37 | 只看該作者
10#
發(fā)表于 2025-3-23 09:13:54 | 只看該作者
Radial Basis Function Networks,Radial basis function (RBF) networks represent a fundamentally different architecture from what we have seen in ?the previous chapters. All the previous chapters use a feed-forward network in which the inputs are transmitted forward from layer to layer in a similar fashion in order to create the final outputs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜昌市| 轮台县| 屯留县| 南宫市| 安新县| 留坝县| 绿春县| 云霄县| 台南市| 滨海县| 乐昌市| 晴隆县| 奉化市| 清新县| 乐山市| 大方县| 宽城| 汤原县| 洞口县| 独山县| 凉山| 呼图壁县| 盘山县| 陈巴尔虎旗| 苗栗县| 九寨沟县| 大化| 伽师县| 嘉黎县| 南漳县| 茌平县| 阳信县| 建昌县| 永寿县| 淮滨县| 大厂| 广丰县| 五家渠市| 梅州市| 沙雅县| 枝江市|