找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks and Analog Computation; Beyond the Turing Li Hava T. Siegelmann Book 1999 Birkh?user Boston 1999 Natur.Theorie.complexity.c

[復(fù)制鏈接]
查看: 49456|回復(fù): 50
樓主
發(fā)表于 2025-3-21 20:01:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Networks and Analog Computation
副標(biāo)題Beyond the Turing Li
編輯Hava T. Siegelmann
視頻videohttp://file.papertrans.cn/664/663701/663701.mp4
叢書名稱Progress in Theoretical Computer Science
圖書封面Titlebook: Neural Networks and Analog Computation; Beyond the Turing Li Hava T. Siegelmann Book 1999 Birkh?user Boston 1999 Natur.Theorie.complexity.c
描述Humanity‘s most basic intellectual quest to decipher nature and master it has led to numerous efforts to build machines that simulate the world or communi- cate with it [Bus70, Tur36, MP43, Sha48, vN56, Sha41, Rub89, NK91, Nyc92]. The computational power and dynamic behavior of such machines is a central question for mathematicians, computer scientists, and occasionally, physicists. Our interest is in computers called artificial neural networks. In their most general framework, neural networks consist of assemblies of simple processors, or "neurons," each of which computes a scalar activation function of its input. This activation function is nonlinear, and is typically a monotonic function with bounded range, much like neural responses to input stimuli. The scalar value produced by a neuron affects other neurons, which then calculate a new scalar value of their own. This describes the dynamical behavior of parallel updates. Some of the signals originate from outside the network and act as inputs to the system, while other signals are communicated back to the environment and are thus used to encode the end result of the computation.
出版日期Book 1999
關(guān)鍵詞Natur; Theorie; complexity; computer science; development; model; robot; robotics; science; simulation
版次1
doihttps://doi.org/10.1007/978-1-4612-0707-8
isbn_softcover978-1-4612-6875-8
isbn_ebook978-1-4612-0707-8
copyrightBirkh?user Boston 1999
The information of publication is updating

書目名稱Neural Networks and Analog Computation影響因子(影響力)




書目名稱Neural Networks and Analog Computation影響因子(影響力)學(xué)科排名




書目名稱Neural Networks and Analog Computation網(wǎng)絡(luò)公開度




書目名稱Neural Networks and Analog Computation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Networks and Analog Computation被引頻次




書目名稱Neural Networks and Analog Computation被引頻次學(xué)科排名




書目名稱Neural Networks and Analog Computation年度引用




書目名稱Neural Networks and Analog Computation年度引用學(xué)科排名




書目名稱Neural Networks and Analog Computation讀者反饋




書目名稱Neural Networks and Analog Computation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:16:22 | 只看該作者
Universality of Sigmoidal Networks,dal-like” activation functions, suggesting that Turing universality is a common property of recurrent neural network models. In conclusion, the computational capabilities of sigmoidal networks are located in between Turing machines and advice Turing machines.
地板
發(fā)表于 2025-3-22 06:48:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:09:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:36 | 只看該作者
Kolmogorov Weights: Between P and P/poly,recursive functions. This chapter proves the intuitive notion that as the real numbers used grow richer in information, more functions become computable. To formalize this statement, we need a measure by which to quantify the information contained in real numbers.
7#
發(fā)表于 2025-3-22 17:48:02 | 只看該作者
Stochastic Dynamics,ty in networks, e.g., [vN56, Pip90, Adl78, Pip88, Pip89, DO77a, DO77b], studied only acyclic architectures of binary gates, while we study general architectures of analog components. Due to these two qualitative differences, our results are totally different from the previous ones, and require new proof techniques.
8#
發(fā)表于 2025-3-22 23:32:00 | 只看該作者
Computational Complexity,computational models. Our presentation starts with elementary definitions of computational theory, but gradually builds to advanced topics; each computational term introduced is immediately related to neural models.
9#
發(fā)表于 2025-3-23 04:27:42 | 只看該作者
Networks with Rational Weights, values only, here a neuron can take on countably infinite different values. The analysis of networks with rational weights is a prerequisite for the proofs of the real weight model in the next chapter. It also sheds light on the role of different types of weights in determining the computational capabilities of the model.
10#
發(fā)表于 2025-3-23 07:26:30 | 只看該作者
Different-limits Networks,er is much wider than that of the previous chapter, and as a result the lower bound on its computational power is weaker. We prove that any function for which the left and right limits exist and are different can serve as an activation function for the neurons to yield a network that is at least as strong computationally as a finite automaton.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中超| 岳阳市| 彭山县| 阳城县| 德惠市| 库尔勒市| 甘洛县| 酒泉市| 黎平县| 布拖县| 东台市| 洞口县| 万荣县| 崇信县| 柘荣县| 北宁市| 兴业县| 当雄县| 新田县| 吉木乃县| 海丰县| 罗城| 宣汉县| 海口市| 神木县| 东宁县| 沐川县| 海淀区| 夹江县| 唐海县| 丰县| 清新县| 宜昌市| 曲麻莱县| 嘉鱼县| 临沧市| 大同县| 文登市| 兴安县| 甘泉县| 太原市|