找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks and Analog Computation; Beyond the Turing Li Hava T. Siegelmann Book 1999 Birkh?user Boston 1999 Natur.Theorie.complexity.c

[復(fù)制鏈接]
查看: 49456|回復(fù): 50
樓主
發(fā)表于 2025-3-21 20:01:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Networks and Analog Computation
副標(biāo)題Beyond the Turing Li
編輯Hava T. Siegelmann
視頻videohttp://file.papertrans.cn/664/663701/663701.mp4
叢書名稱Progress in Theoretical Computer Science
圖書封面Titlebook: Neural Networks and Analog Computation; Beyond the Turing Li Hava T. Siegelmann Book 1999 Birkh?user Boston 1999 Natur.Theorie.complexity.c
描述Humanity‘s most basic intellectual quest to decipher nature and master it has led to numerous efforts to build machines that simulate the world or communi- cate with it [Bus70, Tur36, MP43, Sha48, vN56, Sha41, Rub89, NK91, Nyc92]. The computational power and dynamic behavior of such machines is a central question for mathematicians, computer scientists, and occasionally, physicists. Our interest is in computers called artificial neural networks. In their most general framework, neural networks consist of assemblies of simple processors, or "neurons," each of which computes a scalar activation function of its input. This activation function is nonlinear, and is typically a monotonic function with bounded range, much like neural responses to input stimuli. The scalar value produced by a neuron affects other neurons, which then calculate a new scalar value of their own. This describes the dynamical behavior of parallel updates. Some of the signals originate from outside the network and act as inputs to the system, while other signals are communicated back to the environment and are thus used to encode the end result of the computation.
出版日期Book 1999
關(guān)鍵詞Natur; Theorie; complexity; computer science; development; model; robot; robotics; science; simulation
版次1
doihttps://doi.org/10.1007/978-1-4612-0707-8
isbn_softcover978-1-4612-6875-8
isbn_ebook978-1-4612-0707-8
copyrightBirkh?user Boston 1999
The information of publication is updating

書目名稱Neural Networks and Analog Computation影響因子(影響力)




書目名稱Neural Networks and Analog Computation影響因子(影響力)學(xué)科排名




書目名稱Neural Networks and Analog Computation網(wǎng)絡(luò)公開度




書目名稱Neural Networks and Analog Computation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Networks and Analog Computation被引頻次




書目名稱Neural Networks and Analog Computation被引頻次學(xué)科排名




書目名稱Neural Networks and Analog Computation年度引用




書目名稱Neural Networks and Analog Computation年度引用學(xué)科排名




書目名稱Neural Networks and Analog Computation讀者反饋




書目名稱Neural Networks and Analog Computation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:16:22 | 只看該作者
Universality of Sigmoidal Networks,dal-like” activation functions, suggesting that Turing universality is a common property of recurrent neural network models. In conclusion, the computational capabilities of sigmoidal networks are located in between Turing machines and advice Turing machines.
地板
發(fā)表于 2025-3-22 06:48:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:09:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:36 | 只看該作者
Kolmogorov Weights: Between P and P/poly,recursive functions. This chapter proves the intuitive notion that as the real numbers used grow richer in information, more functions become computable. To formalize this statement, we need a measure by which to quantify the information contained in real numbers.
7#
發(fā)表于 2025-3-22 17:48:02 | 只看該作者
Stochastic Dynamics,ty in networks, e.g., [vN56, Pip90, Adl78, Pip88, Pip89, DO77a, DO77b], studied only acyclic architectures of binary gates, while we study general architectures of analog components. Due to these two qualitative differences, our results are totally different from the previous ones, and require new proof techniques.
8#
發(fā)表于 2025-3-22 23:32:00 | 只看該作者
Computational Complexity,computational models. Our presentation starts with elementary definitions of computational theory, but gradually builds to advanced topics; each computational term introduced is immediately related to neural models.
9#
發(fā)表于 2025-3-23 04:27:42 | 只看該作者
Networks with Rational Weights, values only, here a neuron can take on countably infinite different values. The analysis of networks with rational weights is a prerequisite for the proofs of the real weight model in the next chapter. It also sheds light on the role of different types of weights in determining the computational capabilities of the model.
10#
發(fā)表于 2025-3-23 07:26:30 | 只看該作者
Different-limits Networks,er is much wider than that of the previous chapter, and as a result the lower bound on its computational power is weaker. We prove that any function for which the left and right limits exist and are different can serve as an activation function for the neurons to yield a network that is at least as strong computationally as a finite automaton.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萝北县| 游戏| 海兴县| 古交市| 康马县| 孟村| 田林县| 洛南县| 株洲市| 阿合奇县| 兴隆县| 韩城市| 伊通| 竹山县| 莆田市| 巴彦县| 南木林县| 五家渠市| 页游| 密云县| 万山特区| 蒙山县| 介休市| 聂荣县| 盖州市| 祥云县| 太湖县| 保靖县| 巨鹿县| 河南省| 伊宁市| 湖北省| 柞水县| 安岳县| 隆德县| 广宗县| 额济纳旗| 沭阳县| 营口市| 红桥区| 新闻|