找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Network Data Analysis Using Simulnet?; Edward J. Rzempoluck Book 1998 Springer Science+Business Media New York 1998 algorithms.corr

[復制鏈接]
查看: 35302|回復: 38
樓主
發(fā)表于 2025-3-21 19:55:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Network Data Analysis Using Simulnet?
編輯Edward J. Rzempoluck
視頻videohttp://file.papertrans.cn/664/663683/663683.mp4
圖書封面Titlebook: Neural Network Data Analysis Using Simulnet?;  Edward J. Rzempoluck Book 1998 Springer Science+Business Media New York 1998 algorithms.corr
描述Scope of this Text This text is intended to provide the reader with an introduction to the analysis of numeri- cal data using neural networks. Neural networks as data analytic tools allow data to be analyzed in order to discover and model the functional relationships among the recorded variables. Such data may be empirical. It may originate in an experiment in which the values of one or more dependent variables are recorded as one or more independent vari- ables are manipulated. Alternatively, the data may be observational rather than empirical in nature, representing historical records of the behavior of some set of variables. An ex- ample would be the values of a number of financial commodities, such as stocks or bonds. Finally, the data may originate in a computational model of some physical proc- ess. Instead of recording variables of the physical process, the computer model could be run to generate an artificial analog of the physical data. Since data in virtually any native form can be expressed in numerical format, the scope of the analytical techniques and procedures that will be presented in this text is es- sentially unlimited. Sources of data include research work in a r
出版日期Book 1998
關鍵詞algorithms; correlation; data analysis; filtering; genetic algorithms; learning; principal component analy
版次1
doihttps://doi.org/10.1007/978-1-4612-1746-6
isbn_softcover978-1-4612-7262-5
isbn_ebook978-1-4612-1746-6
copyrightSpringer Science+Business Media New York 1998
The information of publication is updating

書目名稱Neural Network Data Analysis Using Simulnet?影響因子(影響力)




書目名稱Neural Network Data Analysis Using Simulnet?影響因子(影響力)學科排名




書目名稱Neural Network Data Analysis Using Simulnet?網(wǎng)絡公開度




書目名稱Neural Network Data Analysis Using Simulnet?網(wǎng)絡公開度學科排名




書目名稱Neural Network Data Analysis Using Simulnet?被引頻次




書目名稱Neural Network Data Analysis Using Simulnet?被引頻次學科排名




書目名稱Neural Network Data Analysis Using Simulnet?年度引用




書目名稱Neural Network Data Analysis Using Simulnet?年度引用學科排名




書目名稱Neural Network Data Analysis Using Simulnet?讀者反饋




書目名稱Neural Network Data Analysis Using Simulnet?讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:31:32 | 只看該作者
s. Neural networks as data analytic tools allow data to be analyzed in order to discover and model the functional relationships among the recorded variables. Such data may be empirical. It may originate in an experiment in which the values of one or more dependent variables are recorded as one or mo
板凳
發(fā)表于 2025-3-22 02:40:12 | 只看該作者
The Simulnet Desktop,l network and genetic algorithm-based algorithms. Simulnet operations can be grouped into four general categories: Data transformation, analysis, visualization, and modeling. This introduction includes exercises that allow the reader to explore a sample of the functions that are available in each of these four categories.
地板
發(fā)表于 2025-3-22 06:29:25 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:18 | 只看該作者
pherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. ..After a basic treatment of the two- and restricted three-body system motions in .Background Science and the Inner Solar System., perturbations are discu
6#
發(fā)表于 2025-3-22 13:31:24 | 只看該作者
Edward J. Rzempoluckpherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. ..After a basic treatment of the two- and restricted three-body system motions in .Background Science and the Inner Solar System., perturbations are discu
7#
發(fā)表于 2025-3-22 18:12:12 | 只看該作者
Edward J. Rzempoluckpherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. ..After a basic treatment of the two- and restricted three-body system motions in .Background Science and the Inner Solar System., perturbations are discu
8#
發(fā)表于 2025-3-22 22:38:51 | 只看該作者
Edward J. Rzempoluckpherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. ..After a basic treatment of the two- and restricted three-body system motions in .Background Science and the Inner Solar System., perturbations are discu
9#
發(fā)表于 2025-3-23 04:00:23 | 只看該作者
Edward J. Rzempolucketary atmospheres and of the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full
10#
發(fā)表于 2025-3-23 07:56:17 | 只看該作者
Edward J. Rzempolucketary atmospheres and of the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
侯马市| 遂川县| 舞钢市| 团风县| 通海县| 锦屏县| 内黄县| 宣化县| 济源市| 城步| 都昌县| 广平县| 霞浦县| 沈丘县| 宜昌市| 凌海市| 无为县| 平南县| 蓬溪县| 九龙坡区| 吐鲁番市| 蒲江县| 通许县| 漳平市| 霍山县| 新河县| 长岛县| 彭山县| 建昌县| 舒兰市| 东安县| 探索| 三河市| 苏尼特左旗| 攀枝花市| 阜康市| 西平县| 内乡县| 河曲县| 台北县| 贺州市|