找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing: Research and Development; Jagath Chandana Rajapakse,Lipo Wang Book 2004 Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
查看: 11256|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:38:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Information Processing: Research and Development
編輯Jagath Chandana Rajapakse,Lipo Wang
視頻videohttp://file.papertrans.cn/664/663653/663653.mp4
概述Careful collection of recent research and developments in neural information processing.Includes supplementary material:
叢書名稱Studies in Fuzziness and Soft Computing
圖書封面Titlebook: Neural Information Processing: Research and Development;  Jagath Chandana Rajapakse,Lipo Wang Book 2004 Springer-Verlag Berlin Heidelberg 2
描述The field of neural information processing has two main objects: investigation into the functioning of biological neural networks and use of artificial neural networks to sol ve real world problems. Even before the reincarnation of the field of artificial neural networks in mid nineteen eighties, researchers have attempted to explore the engineering of human brain function. After the reincarnation, we have seen an emergence of a large number of neural network models and their successful applications to solve real world problems. This volume presents a collection of recent research and developments in the field of neural information processing. The book is organized in three Parts, i.e., (1) architectures, (2) learning algorithms, and (3) applications. Artificial neural networks consist of simple processing elements called neurons, which are connected by weights. The number of neurons and how they are connected to each other defines the architecture of a particular neural network. Part 1 of the book has nine chapters, demonstrating some of recent neural network architectures derived either to mimic aspects of human brain function or applied in some real world problems. Muresan provi
出版日期Book 2004
關(guān)鍵詞algorithm; algorithms; architecture; artificial neural network; control; development; genetic algorithms; k
版次1
doihttps://doi.org/10.1007/978-3-540-39935-3
isbn_softcover978-3-642-53564-2
isbn_ebook978-3-540-39935-3Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Neural Information Processing: Research and Development影響因子(影響力)




書目名稱Neural Information Processing: Research and Development影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing: Research and Development網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing: Research and Development網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing: Research and Development被引頻次




書目名稱Neural Information Processing: Research and Development被引頻次學(xué)科排名




書目名稱Neural Information Processing: Research and Development年度引用




書目名稱Neural Information Processing: Research and Development年度引用學(xué)科排名




書目名稱Neural Information Processing: Research and Development讀者反饋




書目名稱Neural Information Processing: Research and Development讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:51 | 只看該作者
Networks constructed of neuroid elements capable of temporal summation of signalsmultilevel processing of information. It is also shown that such a statistical analysis is used for textual information processing in the program TextAnalyst. (by Microsystems, Moscow), designed for the automatic semantic analysis of texts.
板凳
發(fā)表于 2025-3-22 02:22:27 | 只看該作者
地板
發(fā)表于 2025-3-22 04:53:47 | 只看該作者
On Some External Characteristics of Brain-like Learning and Some Logical Flaws of Connectionismtionism are not only logical flawed, but also are inconsistent with some commonly observed human learning behavior. The paper does not present any new learning algorithms, but it is about learning algorithms and what properties they should exhibit.
5#
發(fā)表于 2025-3-22 09:40:21 | 只看該作者
Extension of Binary Neural Networks for Multi-class Output and Finite Automatae in the way of expressing a Finite Automaton (FA) in terms of recurrent BNNs. We prove that recurrent BNNs simulate any deterministic as well as non-deterministic finite automaton. The proof is constructive, and the construction process is illustrated by suitable examples.
6#
發(fā)表于 2025-3-22 14:20:37 | 只看該作者
Combination Strategies for Finding Optimal Neural Network Architecture and Weightsry complexity. The learning methodology has been tested using many benchmark databases such as XOR, 10 bit odd parity, handwriting characters from CEDAR, breast cancer and heart disease from UCI machine learning repository. The experimental results, detailed discussion and analysis are included in the chapter.
7#
發(fā)表于 2025-3-22 18:31:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:24:46 | 只看該作者
A Method for Applying Neural Networks to Control of Nonlinear Systemslinear ARX model. The nonlinear controller is then designed in a similar way as designing a controller based on a linear ARX model. Numerical examples are used to illustrate the usefulness of the new method.
9#
發(fā)表于 2025-3-23 05:11:19 | 只看該作者
10#
發(fā)表于 2025-3-23 07:38:37 | 只看該作者
Convolutional Spiking Neural Network for Robust Object Detection with Population Code Using Structur, end-stop, blob, eye, etc.). Introducing a population coding scheme in the CSNN architecture, we show how the biologically inspired model attains invariance to changes in size and position of face and ensures the efficiency of face detection.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽阳县| 隆回县| 木里| 织金县| 高阳县| 博兴县| 宁蒗| 阜南县| 安溪县| 法库县| 吕梁市| 湖州市| 永新县| 柳河县| 余江县| 东海县| 江城| 宣汉县| 富阳市| 岑溪市| 盱眙县| 衡阳县| 五台县| 三穗县| 青冈县| 麟游县| 沂南县| 宜良县| 阜宁县| 大新县| 彭阳县| 大连市| 长治县| 濉溪县| 海宁市| 开化县| 五常市| 大城县| 探索| 区。| 永昌县|