找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat

[復(fù)制鏈接]
樓主: Orthosis
11#
發(fā)表于 2025-3-23 12:33:06 | 只看該作者
DFFCN: Dual Flow Fusion Convolutional Network for?Micro Expression Recognitionotherapy. However, the short duration and subtle movement of facial muscles make it difficult to extract micro-expression features. In this article, we propose a Dual Flow Fusion Convolutional Network (DFFCN) that combines the learning flow and optical flow to capture spatiotemporal features. Specif
12#
發(fā)表于 2025-3-23 13:52:32 | 只看該作者
AUPro: Multi-label Facial Action Unit Proposal Generation for?Sequence-Level Analysisclassification results provided by previous work are not explicit enough for the analysis required by many real-world applications, and as AU is a dynamic process, sequence-level analysis maintaining a global view has yet been gravely ignored in the literature. To fill in the blank, we propose a mul
13#
發(fā)表于 2025-3-23 18:36:36 | 只看該作者
Deep Kernelized Network for?Fine-Grained Recognitionen the original data is not linearly separable. In this paper, we focus on this issue by investigating the impact of using higher order kernels. For this purpose, we replace convolution layers with Kervolution layers proposed in?[.]. Similarly, we replace fully connected layers alternatively with Ke
14#
發(fā)表于 2025-3-23 22:18:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:07:31 | 只看該作者
Open-Set Recognition with?Dual Probability Learningt unknown samples while maintaining high classification accuracy on the known classes. Previous methods are divided into two stages, including open-set identification and closed-set classification. These methods usually reject unknown samples according to the previous analysis of the known classes.
16#
發(fā)表于 2025-3-24 10:23:06 | 只看該作者
How Much Do Synthetic Datasets Matter in?Handwritten Text Recognition?the most popular deep neural network architectures and presented a method based on autoencoder architecture and a schematic character generator. As a comparative model, we used a classifier trained on the whole NIST set of handwritten letters from the Latin alphabet. Our experiments showed that the
17#
發(fā)表于 2025-3-24 14:26:29 | 只看該作者
PCMO: Partial Classification from?CNN-Based Model Outputsnformation for making such predictions usually comes at the cost of retraining the model, changing the model architecture, or applying a new loss function. In an attempt to alleviate this computational burden, we fulfilled partial classification only based on pre-trained CNN-based model outputs (PCM
18#
發(fā)表于 2025-3-24 18:38:21 | 只看該作者
Multi-branch Fusion Fully Convolutional Network for?Person Re-Identification, most of the existing methods adopt large CNN models as baseline, which is complicated and inefficient. In this paper, we propose an efficient and effective CNN architecture named Multi-branch Fusion Fully Convolutional Network (MBF-FCN). Firstly, multi-branch feature extractor module focusing on d
19#
發(fā)表于 2025-3-24 20:13:38 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:55 | 只看該作者
EvoBA: An Evolution Strategy as a Strong Baseline for Black-Box Adversarial Attacksmble more the black-box adversarial conditions, lacking transparency and usually imposing natural, hard constraints on the query budget..We propose . (All the work is open source: . A full paper version is available at .), a black-box adversarial attack based on a surprisingly simple evolutionary se
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景谷| 板桥市| 鲁山县| 扎囊县| 绩溪县| 达州市| 孟州市| 丹巴县| 眉山市| 衡山县| 余庆县| 桂阳县| 雷山县| 攀枝花市| 广汉市| 怀远县| 嘉定区| 灵武市| 西和县| 五峰| 九寨沟县| 沂水县| 宣汉县| 赤城县| 绥江县| 米易县| 安吉县| 南岸区| 乌鲁木齐市| 广汉市| 张家港市| 迭部县| 京山县| 合川市| 孟村| 洪江市| 互助| 长泰县| 古丈县| 太谷县| 英山县|