找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 23rd International C Akira Hirose,Seiichi Ozawa,Derong Liu Conference proceedings 2016 Springer Internationa

[復(fù)制鏈接]
樓主: proptosis
11#
發(fā)表于 2025-3-23 13:07:07 | 只看該作者
12#
發(fā)表于 2025-3-23 14:44:08 | 只看該作者
0302-9743 International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysi
13#
發(fā)表于 2025-3-23 20:55:21 | 只看該作者
14#
發(fā)表于 2025-3-24 00:12:21 | 只看該作者
Hidden Space Neighbourhood Component Analysis for Cancer Classificatione number of samples is equal to the number of features in the feature space. Thus, HSNCA can avoid the small size sample problem. Experimental results on DNA array datasets show that HSNCA is feasibility and efficiency.
15#
發(fā)表于 2025-3-24 04:22:37 | 只看該作者
Prediction of Bank Telemarketing with Co-training of Mixture-of-Experts and MLPand unlabeled data to construct better prediction model. We performed experiments using real-world data from Portuguese bank. Experiments show that GLCT performs well regardless of the ratio of initial labeled data. Through the series of iterating experiments, we obtained better results on various aspects.
16#
發(fā)表于 2025-3-24 09:09:31 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:07 | 只看該作者
Neural Network Based Association Rule Mining from Uncertain Data input vectors and visualize the relationship between the items in a database. Distance map based on the weights of winning neurons and support count of items is used as a criteria to prune data space. As shown in our experiments, the proposed SOM is a promising alternative to typical mining algorithms for ARM from uncertain data.
18#
發(fā)表于 2025-3-24 15:34:18 | 只看該作者
19#
發(fā)表于 2025-3-24 21:34:48 | 只看該作者
Classifying Human Activities with Temporal Extension of Random Forest the temporal information from the sensors, a modified version of random forest is proposed to preserve the temporal information, and harness them in classifying the human activities. The proposed algorithm is tested on 7 public HAR datasets. Promising results are reported, with an average classific
20#
發(fā)表于 2025-3-25 01:05:36 | 只看該作者
Echo State Network Ensemble for Human Motion Data Temporal Phasing: A Case Study on Tennis Forehandsporal phasing of human motion from captured tennis activity (3D data, 66 time-series). Compared to the optimised Echo State Network (ESN) model achieving 85?% classification accuracy, the ESN ensemble system demonstrates improved classification of 95?% and 100?% accurate phasing state transitions fo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河东区| 德庆县| 革吉县| 嘉义县| 修文县| 江都市| 昌乐县| 应城市| 千阳县| 万全县| 新宾| 永川市| 康马县| 东源县| 许昌县| 宣武区| 宁津县| 仁寿县| 泾源县| 陇南市| 西乡县| 潼关县| 安阳县| 湖口县| 广饶县| 虞城县| 洪泽县| 镇原县| 上蔡县| 凉城县| 思茅市| 淮滨县| 高邑县| 荔波县| 敖汉旗| 夏邑县| 新安县| 长阳| 瑞丽市| 芦山县| 中宁县|