找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復制鏈接]
樓主: Maculate
11#
發(fā)表于 2025-3-23 12:24:50 | 只看該作者
Accelerate Support Vector Clustering via?Spectral Data Compression while preserving the key cluster properties of the original data sets based on a novel spectral data compression approach. Then, the resultant spectrally-compressed data sets are leveraged for the development of fast and high quality algorithm for support vector clustering. We conducted extensive e
12#
發(fā)表于 2025-3-23 15:15:48 | 只看該作者
A Novel Iterative Fusion Multi-task Learning Framework for?Solving Dense Predictiontimation, Edge Estimation, etc. With advanced deep learning, many dense prediction tasks have been greatly improved. Multi-task learning is one of the top research lines to boost task performance further. Properly designed multi-task model architectures have better performance and minor memory usage
13#
發(fā)表于 2025-3-23 19:12:25 | 只看該作者
Anti-interference Zeroing Neural Network Model for?Time-Varying Tensor Square Root Findingut existing research mainly focuses on solving the time-invariant matrix square root problem. So far, few researchers have studied the time-varying tensor square root (TVTSR) problem. In this study, a novel anti-interference zeroing neural network (AIZNN) model is proposed to solve TVTSR problem onl
14#
發(fā)表于 2025-3-24 01:20:29 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:00 | 只看該作者
16#
發(fā)表于 2025-3-24 10:26:49 | 只看該作者
17#
發(fā)表于 2025-3-24 13:14:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:21:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:01:55 | 只看該作者
Human-Guided Transfer Learning for Autonomous Robot sometimes unavoidable. While the long learning time can be tolerated for many problems, it is crucial for autonomous robots learning in physical environments. One way to alleviate this problem is through transfer learning, which applies knowledge from one domain to another. In this study, we propos
20#
發(fā)表于 2025-3-25 01:42:46 | 只看該作者
Leveraging Two-Scale Features to?Enhance Fine-Grained Object Retrievalion for fine-grained object retrieval (FGOR). However, existing methods construct the embedding based solely on features extracted by the last layer of CNN, neglecting the potential benefits of leveraging features from other layers. Based on the fact that features extracted by different layers of CN
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长寿区| 夏河县| 双流县| 高碑店市| 大名县| 霍城县| 清镇市| 阳朔县| 郸城县| 大安市| 巴中市| 虞城县| 静海县| 封丘县| 宜兰市| 三门峡市| 贵港市| 堆龙德庆县| 嘉黎县| 山东省| 武定县| 新竹县| 区。| 敦化市| 鹤壁市| 岳阳县| 眉山市| 凌云县| 长丰县| 明水县| 三都| 武山县| 乌鲁木齐市| 张家港市| 庆安县| 呼图壁县| 通江县| 东海县| 伊吾县| 上饶市| 康保县|