找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: peak-flow-meter
11#
發(fā)表于 2025-3-23 09:45:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:38 | 只看該作者
Adversarial Deep Learning with Stackelberg Gamest such vulnerabilities in deep networks. These methods focus on attacking and retraining deep networks with adversarial examples to do either feature manipulation or label manipulation or both. In this paper, we propose a new adversarial learning algorithm for finding adversarial manipulations to de
13#
發(fā)表于 2025-3-23 20:40:23 | 只看該作者
Enhance Feature Representation of Dual Networks for Attribute Predictionition accuracy. In this paper, we propose a novel dual branch adversarial neural network named D-BANN. Inspired by adversarial learning, we drive parallel networks to extract complementary features and adopt a novel loss function to extend the application domain of the model. Moreover, we divide the
14#
發(fā)表于 2025-3-24 00:25:39 | 只看該作者
Data Augment in Imbalanced Learning Based on Generative Adversarial Networksansformation for data augment to imbalanced datasets. Due to those methods learn from local information, they might generate noisy samples in the dataset with high dimension and special complexity. To solve the problem, we propose an improved Generative Adversarial Networks with modification functio
15#
發(fā)表于 2025-3-24 03:14:24 | 只看該作者
A Deep Learning Scheme for Extracting Pedestrian-Parcel Tuples from Videostween pedestrians and parcels is an important task in an intelligent security inspection system. However, it is very challenging due to the high pedestrian volume in these places. In this paper, we propose a deep learning scheme for extracting pedestrian-parcel tuples from camera videos, which inclu
16#
發(fā)表于 2025-3-24 10:27:05 | 只看該作者
17#
發(fā)表于 2025-3-24 12:20:01 | 只看該作者
18#
發(fā)表于 2025-3-24 16:28:44 | 只看該作者
A Gradient-Based Algorithm to Deceive Deep Neural Networksognition of these networks is unstable to slight perturbations of images. To verify this weakness, we propose ., a gradient-based algorithm for deceiving deep neural networks in this paper. There exists a lot of gradient-based attack methods, such as the L-BFGS, FGSM, and Deepfool. Specifically, bas
19#
發(fā)表于 2025-3-24 22:57:54 | 只看該作者
Writing Style Adversarial Network for Handwritten Chinese Character Recognitionpeople pay attention to the influence of writing style on it. In this paper, we aim to improve the performance of HCCR further by weakening the influence of different writing styles. We propose a writing style adversarial network (WSAN) which includes three parts: feature extractor, character classi
20#
發(fā)表于 2025-3-25 00:15:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙山县| 临西县| 临沂市| 栾城县| 平顺县| 中宁县| 岗巴县| 金门县| 孙吴县| 崇仁县| 新宁县| 广宗县| 陕西省| 榆社县| 晋城| 日喀则市| 镇坪县| 陆丰市| 万年县| 伽师县| 康马县| 将乐县| 时尚| 宣恩县| 五河县| 榆中县| 福州市| 伽师县| 林甸县| 自贡市| 吕梁市| 夏邑县| 荃湾区| 东安县| 裕民县| 绥滨县| 全椒县| 望谟县| 灵台县| 辽宁省| 丽水市|