找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 25th International C Long Cheng,Andrew Chi Sing Leung,Seiichi Ozawa Conference proceedings 2018 Springer Nat

[復(fù)制鏈接]
樓主: ODDS
41#
發(fā)表于 2025-3-28 16:52:02 | 只看該作者
Aliaksandr Adamenko,Andrii Fedorenko,Erich Schikutastan. The purpose of?the work was to conduct a comprehensive assessment of the current state of the soil cover in the dried bed of the Aral Sea in order to study the processes that are occurring in the local soils as a result of anthropogenic impacts inducing soil degradation and desertification (e.
42#
發(fā)表于 2025-3-28 18:53:48 | 只看該作者
43#
發(fā)表于 2025-3-29 00:24:55 | 只看該作者
44#
發(fā)表于 2025-3-29 06:55:05 | 只看該作者
Laszlo Barna Iantovics,Corina Rotar,Elena Nechitaf cohesive soils. Hence, relative compaction is used as a governing parameter to represent the different states of natural in situ conditions in cohesive soils. Relative compaction is defined as the ratio of field dry density to the maximum dry density determined by the standard Proctor test. The am
45#
發(fā)表于 2025-3-29 10:58:17 | 只看該作者
Handling Concept Drift in Time-Series Data: Meta-cognitive Recurrent Recursive-Kernel OS-ELMLearning Machine with a new modified Drift Detector Mechanism (Meta-RRKOS-ELM-DDM). This model combines the strengths of Recurrent Kernel Online Sequential Extreme Learning Machine (RKOS-ELM) with the recursive kernel method and a new meta-cognitive learning strategy. We apply Drift Detector Mechani
46#
發(fā)表于 2025-3-29 12:25:30 | 只看該作者
Analysis and Application of Step Size of RK4 for Performance Measure of Predictability Horizon of Ch could not have shown the comparison of the performance with other methods. In order to obtain general and absolute performance measure of predictability horizon, this paper analyzes to formulate the relationship between the mean predictability horizon and the step size of the fourth-order Runge-Kut
47#
發(fā)表于 2025-3-29 17:13:17 | 只看該作者
Simultaneous Analysis of Subjective and Objective Data Using Coupled Tensor Self-organizing Maps: WiOM), consists of two tensor SOMs, one of which learns the subjective data while the other learns the objective data. The coupled tensor SOM visualizes the dataset as three maps, namely, one target object map, and two survey item maps corresponding to the subjective and objective data. This method ca
48#
發(fā)表于 2025-3-29 22:36:59 | 只看該作者
Marine Multiple Time Series Relevance Discovery Based on Complex Networkne data. At present, a marine measuring point can acquire multiple types of marine data, only by comprehensively using multiple types of ocean data we can more effectively discover the relationship between various ocean measuring points. This paper proposes a mapping method for fusion marine multipl
49#
發(fā)表于 2025-3-29 23:55:50 | 只看該作者
An Effective Lazy Shapelet Discovery Algorithm for Time Series Classification-based models have some obvious drawbacks. First, the progress of shapelet extraction is time consuming. Second, the shapelets discovered are merely good on average for the training instances, while local features of each instance to be classified are neglected. For that, instance selection strategy
50#
發(fā)表于 2025-3-30 05:29:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新津县| 仪征市| 新安县| 大港区| 宽甸| 德钦县| 方正县| 廉江市| 贵南县| 平陆县| 敦化市| 普格县| 萨迦县| 罗城| 景宁| 新乡县| 江都市| 陇川县| 通州市| 博野县| 双牌县| 游戏| 仁化县| 慈溪市| 临夏县| 商河县| 杭州市| 谢通门县| 广宁县| 文安县| 分宜县| 澄城县| 怀仁县| 灵璧县| 定西市| 孙吴县| 纳雍县| 岐山县| 南木林县| 五华县| 上蔡县|