找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 23rd International C Akira Hirose,Seiichi Ozawa,Derong Liu Conference proceedings 2016 Springer Internationa

[復(fù)制鏈接]
查看: 34297|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:21:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Information Processing
副標(biāo)題23rd International C
編輯Akira Hirose,Seiichi Ozawa,Derong Liu
視頻videohttp://file.papertrans.cn/664/663635/663635.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 23rd International C Akira Hirose,Seiichi Ozawa,Derong Liu Conference proceedings 2016 Springer Internationa
描述.The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences;theory and algorithms...?.
出版日期Conference proceedings 2016
關(guān)鍵詞embedded systems; genetic algorithms; neural networks; pattern recognition; swarm intelligence; big data;
版次1
doihttps://doi.org/10.1007/978-3-319-46672-9
isbn_softcover978-3-319-46671-2
isbn_ebook978-3-319-46672-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:13:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:15:46 | 只看該作者
地板
發(fā)表于 2025-3-22 08:29:45 | 只看該作者
Semi Supervised Autoencoder(greedily) construct a stacked architecture. We demonstrate the efficacy our design in terms of both accuracy and run time requirements for the case of image classification. Our model is able to provide high classification accuracy with even simple classification schemes as compared to existing models for deep architectures.
5#
發(fā)表于 2025-3-22 10:46:32 | 只看該作者
Sampling-Based Gradient Regularization for Capturing Long-Term Dependencies in Recurrent Neural Netwframework experimentally we use some special synthetic benchmarks for testing RNNs on ability to capture long-term dependencies. Our network can detect links between events in the (temporal) sequence at the range?100 and longer.
6#
發(fā)表于 2025-3-22 15:14:59 | 只看該作者
Modal Regression via Direct Log-Density Derivative Estimation good density estimator does not necessarily mean a good density derivative estimator. In this paper, we propose a novel method for modal regression based on . estimation of the log-density derivative without density estimation. Experiments show the superiority of our direct method over PMS.
7#
發(fā)表于 2025-3-22 17:55:02 | 只看該作者
8#
發(fā)表于 2025-3-23 00:54:14 | 只看該作者
Nuclear Norm Regularized Randomized Neural Networkhidden layer to target) network. This is solved by imposing a nuclear norm penalty. The proposed technique is compared with the basic ELM and the Sparse ELM. Results on benchmark datasets, show that our method outperforms both of them.
9#
發(fā)表于 2025-3-23 05:19:19 | 只看該作者
A Theoretical Analysis of Semi-supervised Learningtively different dynamical behaviors. Furthermore, we propose a new algorithm that improves the generalization performance by switching the number of input vectors used in an update as the time step proceeds.
10#
發(fā)表于 2025-3-23 06:50:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 吉木乃县| 太和县| 云霄县| 麻江县| 盐亭县| 阿勒泰市| 伊宁市| 东港市| 防城港市| 呼伦贝尔市| 托克逊县| 固镇县| 扶风县| 石渠县| 易门县| 泰安市| 封开县| 巴林左旗| 黄骅市| 潼南县| 莆田市| 措美县| 芒康县| 安庆市| 元阳县| 庆安县| 肥东县| 隆安县| 陆河县| 衡东县| 盈江县| 永吉县| 广东省| 甘南县| 阆中市| 北辰区| 金山区| 九龙坡区| 大港区| 通榆县|