找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: melancholy
31#
發(fā)表于 2025-3-26 22:54:43 | 只看該作者
SLG-NET: Subgraph Neural Network with?Local-Global Braingraph Feature Extraction Modules and?a?Novell subgraph generation algorithm based on sub-structure information of brain. To improve feature extraction capabilities, a local and global braingraph feature extraction modules are proposed to extract braingraph properties at both local and global levels. Comprehensive experiments performed on rest
32#
發(fā)表于 2025-3-27 02:09:11 | 只看該作者
CrowdNav-HERO: Pedestrian Trajectory Prediction Based Crowded Navigation with?Human-Environment-Robo of pedestrians, and a series of realistic environments is customized to train and evaluate crowded navigation strategies. . Then, a pedestrian trajectory prediction module is introduced to eliminate the dependence of navigation strategies on pedestrian speed features. . Finally, a novel crowded nav
33#
發(fā)表于 2025-3-27 09:08:12 | 只看該作者
Modeling User’s Neutral Feedback in?Conversational Recommendationral Feedback in Conversational Recommendation (NFCR). We adopt a joint learning task framework for feature extraction and use inverse reinforcement learning to train the decision network, helping CRS make appropriate decisions at each turn. Finally, we utilize the fine-grained neutral feedback from
34#
發(fā)表于 2025-3-27 13:16:24 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:11 | 只看該作者
BIN: A Bio-Signature Identification Network for?Interpretable Liver Cancer Microvascular Invasion Prive) by utilizing Non-MVI and MVI biosignatures. The adoption of a transparent decision-making process in BIN ensures interpretability, while the proposed biosignatures overcome the limitations associated with the manual feature extraction. Moreover, a multi-modal MRI based BIN method is also explor
36#
發(fā)表于 2025-3-27 19:18:10 | 只看該作者
Human-to-Human Interaction Detection merging stage which reconstructs the relationship between instances and groups. All SaMFormer components are jointly trained in an end-to-end manner. Extensive experiments on AVA-I validate the superiority of SaMFormer over representative methods.
37#
發(fā)表于 2025-3-27 22:16:52 | 只看該作者
ASGNet: Adaptive Semantic Gate Networks for?Log-Based Anomaly Diagnosisance of log anomaly diagnosis is the key point of this paper. In this paper, we propose an adaptive semantic gate networks (ASGNet) that combines statistical features and semantic features to selectively use statistical features to consolidate log text semantic representation. Specifically, ASGNet e
38#
發(fā)表于 2025-3-28 04:55:27 | 只看該作者
Propheter: Prophetic Teacher Guided Long-Tailed Distribution Learningions. The target long-tailed prediction model is then optimized under the instruction of the well-trained “Propheter”, such that the distributions of different classes are as distinguishable as possible from each other. Experiments on eight long-tailed benchmarks across three architectures demonstra
39#
發(fā)表于 2025-3-28 08:44:32 | 只看該作者
Bin Ye,Peng Yu,Cong Hu,Binbin Qiu,Ning Tannt es wichtig, den Stand der Technik in Theorie und Praxis zu erfassen und eine Bestandsaufnahme von laufenden Aktivitaten zu versuchen. Dieser Band gibt einen 978-3-540-13383-4978-3-642-69705-0Series ISSN 0343-3005
40#
發(fā)表于 2025-3-28 13:27:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝坻区| 东莞市| 泾源县| 石阡县| 寻甸| 武汉市| 石河子市| 逊克县| 汤原县| 兰溪市| 扬州市| 喀喇沁旗| 修水县| 颍上县| 卢龙县| 张家港市| 时尚| 白朗县| 洛扎县| 慈利县| 福鼎市| 新巴尔虎左旗| 南郑县| 衡阳县| 巴林右旗| 巫山县| 沈丘县| 和硕县| 万州区| 娱乐| 新安县| 康保县| 无为县| 蒙阴县| 金塔县| 玛曲县| 徐水县| 明溪县| 仙居县| 珠海市| 宿松县|