找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 47052|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:02:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Neural Information Processing
副標(biāo)題30th International C
編輯Biao Luo,Long Cheng,Chaojie Li
視頻videohttp://file.papertrans.cn/664/663625/663625.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable
描述The six-volume set LNCS 14447 until 14452 constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.?.The 652 papers presented in the proceedings set were carefully reviewed and selected from 1274 submissions. They focus on theory and algorithms, cognitive neurosciences; human centred computing; applications in neuroscience, neural networks, deep learning, and related fields.?.
出版日期Conference proceedings 2024
關(guān)鍵詞pattern recognition; affective and cognitive learning; big data; bioinformatics; brain-machine interface
版次1
doihttps://doi.org/10.1007/978-981-99-8070-3
isbn_softcover978-981-99-8069-7
isbn_ebook978-981-99-8070-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱(chēng)Neural Information Processing影響因子(影響力)




書(shū)目名稱(chēng)Neural Information Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Neural Information Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing被引頻次




書(shū)目名稱(chēng)Neural Information Processing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing年度引用




書(shū)目名稱(chēng)Neural Information Processing年度引用學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing讀者反饋




書(shū)目名稱(chēng)Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:23:57 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:15 | 只看該作者
https://doi.org/10.1007/978-981-99-8070-3pattern recognition; affective and cognitive learning; big data; bioinformatics; brain-machine interface
5#
發(fā)表于 2025-3-22 08:57:28 | 只看該作者
6#
發(fā)表于 2025-3-22 15:56:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:49 | 只看該作者
GRF-GMM: A Trajectory Optimization Framework for?Obstacle Avoidance in?Learning from?Demonstrationaussian mixture model/Gaussian mixture regression (GMM/GMR) has been widely used for its robustness and effectiveness. However, there still exist many problems of GMM when an obstacle, which is not presented in original demonstrations, appears in the workspace of robots. To address these problems, t
8#
發(fā)表于 2025-3-23 00:23:51 | 只看該作者
9#
發(fā)表于 2025-3-23 03:56:26 | 只看該作者
CrowdNav-HERO: Pedestrian Trajectory Prediction Based Crowded Navigation with?Human-Environment-Roboonmental layout usually significantly impacts crowd distribution and robotic motion decision-making during crowded navigation. However, previous methods almost either learn and evaluate navigation strategies in unrealistic barrier-free settings or assume that expensive features like pedestrian speed
10#
發(fā)表于 2025-3-23 08:05:35 | 只看該作者
Modeling User’s Neutral Feedback in?Conversational Recommendationns. Although CRS has shown success in generating recommendation lists based on user’s preferences, existing methods restrict users to make binary responses, i.e., accept and reject, after recommending, which limits users from expressing their needs. In fact, the user’s rejection feedback may contain
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合江县| 岑巩县| 罗定市| 九寨沟县| 二连浩特市| 和政县| 东安县| 丹凤县| 巴林右旗| 黑山县| 阿城市| 徐闻县| 拉萨市| 新巴尔虎左旗| 武强县| 普洱| 库车县| 会宁县| 雷山县| 东阿县| 抚顺市| 威信县| 赣州市| 和平区| 剑河县| 丰镇市| 龙门县| 池州市| 贡觉县| 溧阳市| 绵阳市| 金昌市| 克东县| 阜阳市| 四川省| 吴堡县| 屏东市| 正定县| 辽宁省| 定州市| 嘉荫县|