找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla

[復制鏈接]
樓主: 大破壞
51#
發(fā)表于 2025-3-30 09:49:19 | 只看該作者
Residual CRNN and Its Application to Handwritten Digit String Recognitione applied to most network architectures. In this paper, we embrace these observations and present a new string recognition model named Residual Convolutional Recurrent Neural Network (Residual CRNN, or Res-CRNN) based on CRNN and residual connections. We add residual connections to convolutional lay
52#
發(fā)表于 2025-3-30 12:41:30 | 只看該作者
53#
發(fā)表于 2025-3-30 19:37:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:42:25 | 只看該作者
55#
發(fā)表于 2025-3-31 03:11:46 | 只看該作者
Dense Image Captioning Based on Precise Feature Extractiong has emerged, which realizes the full understanding of the image by localizing and describing multiple salient regions covering the image. Despite there are state-of-the-art approaches encouraging progress, the ability to position and to describe the target area correspondingly is not enough as we
56#
發(fā)表于 2025-3-31 07:01:53 | 只看該作者
Improve Image Captioning by Self-attentiony determined by visual features as well as the hidden states of Recurrent Neural Network (RNN), while the interaction of visual features was not modelled. In this paper, we introduce the self-attention into the current image captioning framework to leverage the nonlocal correlation among visual feat
57#
發(fā)表于 2025-3-31 11:14:29 | 只看該作者
Dual-Path Recurrent Network for Image Super-Resolutioners blindly leads to overwhelming parameters and high computational complexities. Besides, the conventional feed-forward architectures can hardly fully exploit the mutual dependencies between low- and high-resolution images. Motivated by these observations, we first propose a novel architecture by t
58#
發(fā)表于 2025-3-31 14:34:36 | 只看該作者
Attention-Based Image Captioning Using DenseNet Featureshe whole scene to generate image captions. Such a mechanism often fails to get the information of salient objects and cannot generate semantically correct captions. We consider an attention mechanism that can focus on relevant parts of the image to generate fine-grained description of that image. We
59#
發(fā)表于 2025-3-31 21:17:01 | 只看該作者
High-Performance Light Field Reconstruction with Channel-wise and SAI-wise Attention correlated information of LF, most of the previous methods have to stack several convolutional layers to improve the feature representation and result in heavy computation and large model sizes. In this paper, we propose channel-wise and SAI-wise attention modules to enhance the feature representat
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 17:13
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
曲阳县| 高雄市| 鲁甸县| 普安县| 定兴县| 青神县| 博湖县| 蒙山县| 崇明县| 泸西县| 民和| 枣庄市| 拜泉县| 南安市| 方城县| 时尚| 东辽县| 义乌市| 集安市| 张北县| 青海省| 潼关县| 南漳县| 南雄市| 禹州市| 渝北区| 广平县| 儋州市| 云南省| 九龙坡区| 黔江区| 砀山县| 公安县| 湖口县| 普洱| 淮滨县| 台北县| 延吉市| 林芝县| 崇仁县| 盐池县|