找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: 大破壞
51#
發(fā)表于 2025-3-30 09:49:19 | 只看該作者
Residual CRNN and Its Application to Handwritten Digit String Recognitione applied to most network architectures. In this paper, we embrace these observations and present a new string recognition model named Residual Convolutional Recurrent Neural Network (Residual CRNN, or Res-CRNN) based on CRNN and residual connections. We add residual connections to convolutional lay
52#
發(fā)表于 2025-3-30 12:41:30 | 只看該作者
53#
發(fā)表于 2025-3-30 19:37:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:42:25 | 只看該作者
55#
發(fā)表于 2025-3-31 03:11:46 | 只看該作者
Dense Image Captioning Based on Precise Feature Extractiong has emerged, which realizes the full understanding of the image by localizing and describing multiple salient regions covering the image. Despite there are state-of-the-art approaches encouraging progress, the ability to position and to describe the target area correspondingly is not enough as we
56#
發(fā)表于 2025-3-31 07:01:53 | 只看該作者
Improve Image Captioning by Self-attentiony determined by visual features as well as the hidden states of Recurrent Neural Network (RNN), while the interaction of visual features was not modelled. In this paper, we introduce the self-attention into the current image captioning framework to leverage the nonlocal correlation among visual feat
57#
發(fā)表于 2025-3-31 11:14:29 | 只看該作者
Dual-Path Recurrent Network for Image Super-Resolutioners blindly leads to overwhelming parameters and high computational complexities. Besides, the conventional feed-forward architectures can hardly fully exploit the mutual dependencies between low- and high-resolution images. Motivated by these observations, we first propose a novel architecture by t
58#
發(fā)表于 2025-3-31 14:34:36 | 只看該作者
Attention-Based Image Captioning Using DenseNet Featureshe whole scene to generate image captions. Such a mechanism often fails to get the information of salient objects and cannot generate semantically correct captions. We consider an attention mechanism that can focus on relevant parts of the image to generate fine-grained description of that image. We
59#
發(fā)表于 2025-3-31 21:17:01 | 只看該作者
High-Performance Light Field Reconstruction with Channel-wise and SAI-wise Attention correlated information of LF, most of the previous methods have to stack several convolutional layers to improve the feature representation and result in heavy computation and large model sizes. In this paper, we propose channel-wise and SAI-wise attention modules to enhance the feature representat
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东省| 井陉县| 土默特右旗| 蓬莱市| 兴山县| 吉隆县| 察雅县| 渑池县| 原平市| 炉霍县| 锡林郭勒盟| 张家口市| 永胜县| 灵璧县| 林芝县| 皮山县| 文登市| 平利县| 双峰县| 阿瓦提县| 颍上县| 凯里市| 澎湖县| 丹东市| 钟祥市| 剑阁县| 策勒县| 长武县| 巴中市| 昌江| 彰化县| 唐山市| 英吉沙县| 湖南省| 徐州市| 德清县| 库尔勒市| 高唐县| 建昌县| 鹤壁市| 荆门市|