找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: 大破壞
51#
發(fā)表于 2025-3-30 09:49:19 | 只看該作者
Residual CRNN and Its Application to Handwritten Digit String Recognitione applied to most network architectures. In this paper, we embrace these observations and present a new string recognition model named Residual Convolutional Recurrent Neural Network (Residual CRNN, or Res-CRNN) based on CRNN and residual connections. We add residual connections to convolutional lay
52#
發(fā)表于 2025-3-30 12:41:30 | 只看該作者
53#
發(fā)表于 2025-3-30 19:37:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:42:25 | 只看該作者
55#
發(fā)表于 2025-3-31 03:11:46 | 只看該作者
Dense Image Captioning Based on Precise Feature Extractiong has emerged, which realizes the full understanding of the image by localizing and describing multiple salient regions covering the image. Despite there are state-of-the-art approaches encouraging progress, the ability to position and to describe the target area correspondingly is not enough as we
56#
發(fā)表于 2025-3-31 07:01:53 | 只看該作者
Improve Image Captioning by Self-attentiony determined by visual features as well as the hidden states of Recurrent Neural Network (RNN), while the interaction of visual features was not modelled. In this paper, we introduce the self-attention into the current image captioning framework to leverage the nonlocal correlation among visual feat
57#
發(fā)表于 2025-3-31 11:14:29 | 只看該作者
Dual-Path Recurrent Network for Image Super-Resolutioners blindly leads to overwhelming parameters and high computational complexities. Besides, the conventional feed-forward architectures can hardly fully exploit the mutual dependencies between low- and high-resolution images. Motivated by these observations, we first propose a novel architecture by t
58#
發(fā)表于 2025-3-31 14:34:36 | 只看該作者
Attention-Based Image Captioning Using DenseNet Featureshe whole scene to generate image captions. Such a mechanism often fails to get the information of salient objects and cannot generate semantically correct captions. We consider an attention mechanism that can focus on relevant parts of the image to generate fine-grained description of that image. We
59#
發(fā)表于 2025-3-31 21:17:01 | 只看該作者
High-Performance Light Field Reconstruction with Channel-wise and SAI-wise Attention correlated information of LF, most of the previous methods have to stack several convolutional layers to improve the feature representation and result in heavy computation and large model sizes. In this paper, we propose channel-wise and SAI-wise attention modules to enhance the feature representat
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石台县| 开平市| 茂名市| 光泽县| 伊金霍洛旗| 灵川县| 孙吴县| 皋兰县| 闽清县| 金湖县| 武义县| 盈江县| 邯郸县| 阳城县| 固阳县| 临汾市| 永寿县| 遵义县| 武冈市| 湖州市| 云龙县| 五华县| 曲阳县| 泾阳县| 赣榆县| 宜川县| 耒阳市| 蛟河市| 海南省| 泉州市| 大埔县| 昌都县| 贡山| 邵阳市| 江城| 修水县| 鹿泉市| 牙克石市| 当涂县| 阳谷县| 兴山县|