找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 25th International C Long Cheng,Andrew Chi Sing Leung,Seiichi Ozawa Conference proceedings 2018 Springer Nat

[復(fù)制鏈接]
查看: 38622|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:41:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Information Processing
副標(biāo)題25th International C
編輯Long Cheng,Andrew Chi Sing Leung,Seiichi Ozawa
視頻videohttp://file.papertrans.cn/664/663607/663607.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 25th International C Long Cheng,Andrew Chi Sing Leung,Seiichi Ozawa Conference proceedings 2018 Springer Nat
描述.The seven-volume set of LNCS 11301-11307,?constitutes the proceedings of the 25th International Conference on Neural Information Processing,?ICONIP 2018, held in Siem Reap, Cambodia, in December 2018..The 401?full papers presented were carefully?reviewed and selected from 575 submissions. The papers?address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains.?The 4th volume, LNCS 11304, is organized in topical sections on feature selection, clustering, classification, and detection.?.
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; biomedical engineering; data mining; deep learning; hci; human-computer interact
版次1
doihttps://doi.org/10.1007/978-3-030-04212-7
isbn_softcover978-3-030-04211-0
isbn_ebook978-3-030-04212-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:31:21 | 只看該作者
地板
發(fā)表于 2025-3-22 07:56:07 | 只看該作者
Neural Information Processing978-3-030-04212-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
5#
發(fā)表于 2025-3-22 10:43:25 | 只看該作者
Multi-label Feature Selection Method Combining Unbiased Hilbert-Schmidt Independence Criterion with ely dealt with via feature selection procedure. Unbiased Hilbert-Schmidt independence criterion (HSIC) is a kernel-based dependence measure between feature and label data, which has been combined with greedy search techniques (e.g., sequential forward selection) to search for a locally optimal featu
6#
發(fā)表于 2025-3-22 16:44:30 | 只看該作者
Anthropometric Features Based Gait Pattern Prediction Using Random Forest for Patient-Specific Gait and personalized gait trajectories designed for robot assisted gait training are very important for improving the therapeutic results. Meanwhile, it has been proved that human gaits are closely related to anthropometric features, which however has not been well researched. Therefore, a method based
7#
發(fā)表于 2025-3-22 18:43:34 | 只看該作者
Robust Multi-view Features Fusion Method Based on CNMFmultiple views to obtain the new feature representation of the object using a right model. In practical applications, Collective Matrix Factorization (CMF) has good effects on the fusion of multi-view data, but for noise-containing situations, the generalization ability is poor. Based on this, the p
8#
發(fā)表于 2025-3-23 01:16:44 | 只看該作者
9#
發(fā)表于 2025-3-23 01:48:50 | 只看該作者
An Effective Discriminative Learning Approach for Emotion-Specific Features Using Deep Neural Networdering certain tasks from achieving better performance. Therefore, automatically learning a good representation that disentangles these components is non-trivial. In this paper, we propose a hierarchical method to extract utterance-level features from frame-level acoustic features using deep neural
10#
發(fā)表于 2025-3-23 08:53:12 | 只看該作者
Convolutional Neural Network with Spectrogram and Perceptual Features for Speech Emotion Recognition perceptual features such as low-level descriptors (LLDs) and their statistical values were not utilized sufficiently in CNN-based emotion recognition. To solve this problem, we propose novel features to combine spectrogram and perceptual features in different levels. Firstly, frame-level LLDs are a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昔阳县| 陵水| 措美县| 长兴县| 海林市| 安仁县| 唐山市| 平塘县| 玛沁县| 深圳市| 玉田县| 牙克石市| 秀山| 南充市| 霍州市| 麻江县| 淮安市| 齐齐哈尔市| 和田市| 绥芬河市| 郸城县| 读书| 余姚市| 綦江县| 青龙| 开鲁县| 开阳县| 永登县| 获嘉县| 清远市| 茶陵县| 铜梁县| 中江县| 岗巴县| 阿瓦提县| 阿拉善左旗| 沈阳市| 阿克陶县| 舒城县| 沽源县| 石台县|