找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 22nd International C Sabri Arik,Tingwen Huang,Qingshan Liu Conference proceedings 2015 Springer Internationa

[復(fù)制鏈接]
樓主: ODE
11#
發(fā)表于 2025-3-23 10:24:30 | 只看該作者
Deep Convolutional Neural Networks for Human Activity Recognition with Smartphone Sensors,local dependency characteristics. Moreover, activities tend to be hierarchical and translation invariant in nature. Consequently, convolutional neural networks (convnet) exploit these characteristics, which make it appropriate in dealing with time-series sensor data. In this paper, we propose an arc
12#
發(fā)表于 2025-3-23 15:48:44 | 只看該作者
Concentration Monitoring with High Accuracy but Low Cost EEG Device,rocessing in human brain. To understand the concentration process of humans, the underlying neural mechanism needs to be explored. EEG device is a promising device to understand underlying neural mechanism of various cognitive functions. In this paper, we propose an accurate concentration monitoring
13#
發(fā)表于 2025-3-23 20:52:31 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:20:29 | 只看該作者
A Study to Investigate Different EEG Reference Choices in Diagnosing Major Depressive Disorder,iency during diagnosis of psychiatric conditions, e.g., major depressive disorder (MDD). In literature, various EEG references have been proposed, however, none of them is considered as gold-standard [.]. Therefore, this study aims to evaluate 3 EEG references including infinity reference (IR), aver
16#
發(fā)表于 2025-3-24 08:20:42 | 只看該作者
17#
發(fā)表于 2025-3-24 14:21:15 | 只看該作者
Enhancing Performance of EEG-based Emotion Recognition Systems Using Feature Smoothing,that the correlation between EEG and emotion characteristics is not taken into account. There are the differences among EEG features, even with the same emotion state in adjacent time because EEG extracted features usually change dramatically, while emotion states vary gradually or smoothly. In addi
18#
發(fā)表于 2025-3-24 16:57:58 | 只看該作者
19#
發(fā)表于 2025-3-24 20:53:50 | 只看該作者
Mining Top-k Minimal Redundancy Frequent Patterns over Uncertain Databases,al approaches have been proposed for mining high significance frequent itemsets over uncertain data, however, previous algorithms yield many redundant frequent itemsets and require to set an appropriate user specified threshold which is difficult for users. In this paper, we formally define the prob
20#
發(fā)表于 2025-3-25 00:05:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大兴区| 桃园县| 西安市| 澄江县| 盐边县| 大田县| 韶山市| 昆山市| 太保市| 平塘县| 藁城市| 高邮市| 招远市| 都昌县| 郑州市| 华蓥市| 临桂县| 镇平县| 崇明县| 连南| 普安县| 泸定县| 邵阳市| 江城| 乌苏市| 怀集县| 白朗县| 乐清市| 深州市| 交城县| 福海县| 句容市| 肇庆市| 河津市| 沂南县| 泰兴市| 建德市| 湘潭县| 周宁县| 西华县| 岳阳市|