找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復制鏈接]
樓主: thyroidectomy
51#
發(fā)表于 2025-3-30 10:41:20 | 只看該作者
A Hybrid Approach Using Convolution and?Transformer for?Mongolian Ancient Documents Recognitionommon characters while neglecting rare characters. Our proposed approach integrates focal loss to enhance the model’s attention towards rare characters, thereby improving the overall recognition performance of the model for all characters. After training, the model is capable of rapidly and efficien
52#
發(fā)表于 2025-3-30 12:24:53 | 只看該作者
Incomplete Multi-view Subspace Clustering Using Non-uniform Hyper-graph for?High-Order Informationdge is decided based on the distribution of the corresponding center point. This is a simple but effective way to utilize high-order information without bringing computational burden and extra parameters. Besides the advantage that the partial samples can be reconstructed more reasonably, our method
53#
發(fā)表于 2025-3-30 16:47:30 | 只看該作者
Deep Learning-Empowered Unsupervised Maritime Anomaly Detectionsiduals, enabling image-level anomaly detection. Furthermore, pixel-level anomaly detection is achieved by analyzing the residuals of the reconstructed image pixels to localize the anomalous trajectory. The proposed method is compared to autoencoder (AE) and variational autoencoder (VAE) model, and
54#
發(fā)表于 2025-3-31 00:15:16 | 只看該作者
Hazardous Driving Scenario Identification with?Limited Training Samplesm the advantages of augmented samples, we can leverage a more sophisticated ResNet architecture for feature extraction from compressed dashcam videos called motion profiles to identify hazardous driving scenarios. By incorporating the augmented samples into the training set, the AUC of the proposed
55#
發(fā)表于 2025-3-31 02:17:19 | 只看該作者
56#
發(fā)表于 2025-3-31 05:38:22 | 只看該作者
57#
發(fā)表于 2025-3-31 12:10:49 | 只看該作者
Jianqiang Jing,Bing Jia,Baoqi Huang,Lei Liu,Xiao Yangt ist (der Typ von Variablen also erst zur Laufzeit festgestellt wird). Daher ist es für den Programmierer mitunter n?tig, den Typ einer Variablen in einem Programm untersuchen zu k?nnen. Die entsprechenden Hilfsmittel werden ebenfalls hier bereitgestellt. An dieser Stelle stehen schon genug Hilfsmi
58#
發(fā)表于 2025-3-31 16:56:42 | 只看該作者
59#
發(fā)表于 2025-3-31 21:34:19 | 只看該作者
60#
發(fā)表于 2025-3-31 23:16:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
全椒县| 洛阳市| 南昌县| 吉木乃县| 巧家县| 弥勒县| 红桥区| 鹤山市| 台中市| 揭西县| 交口县| 石阡县| 新乡市| 元朗区| 仪征市| 井研县| 宣武区| 慈溪市| 桑植县| 高平市| 吴忠市| 西丰县| 丽水市| 胶南市| 昌邑市| 莱芜市| 邹城市| 冷水江市| 师宗县| 潼南县| 柳江县| 缙云县| 台中县| 沙雅县| 平南县| 阳曲县| 宝应县| 会东县| 郯城县| 勐海县| 建平县|