找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[復制鏈接]
查看: 48765|回復: 60
樓主
發(fā)表于 2025-3-21 20:05:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標題29th International C
編輯Mohammad Tanveer,Sonali Agarwal,Adam Jatowt
視頻videohttp://file.papertrans.cn/664/663597/663597.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (
描述The three-volume set LNCS 13623, 13624, and 13625 constitutes the refereed proceedings of the 29th International Conference on Neural Information Processing, ICONIP 2022, held as a virtual event, November 22–26, 2022.?.The 146 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centered Computing; and Applications..The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2023
關鍵詞pattern recognition; signal processing; neural networks; deep learning; image processing; computing metho
版次1
doihttps://doi.org/10.1007/978-3-031-30111-7
isbn_softcover978-3-031-30110-0
isbn_ebook978-3-031-30111-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學科排名




書目名稱Neural Information Processing網絡公開度




書目名稱Neural Information Processing網絡公開度學科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:42:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:50:45 | 只看該作者
Ru Peng,Nankai Lin,Yi Fang,Shengyi Jiang,Tianyong Hao,Boyu Chen,Junbo Zhaorial case studies, they capture the wealth of knowledge that eight companies have gathered during the introduction of the software product line engineering approach in their daily practice. After reading this b978-3-642-09061-5978-3-540-71437-8
地板
發(fā)表于 2025-3-22 08:33:06 | 只看該作者
Yihong Zhuang,Changxing Jing,Senlin Cai,Lexing Huang,Yue Huang,Xiaotong Tu,Xinghao Dingg, Software Demonstrations and Training, The Market / Your Customers, or Organizational Maturity..The book helps product people to maximize their impact and effectiveness. Whether you’re a seasoned practitioner978-3-030-19873-2978-3-030-19871-8Series ISSN 2192-8096 Series E-ISSN 2192-810X
5#
發(fā)表于 2025-3-22 09:30:04 | 只看該作者
Zhen Gao,Xiaowen Chen,Jingning Xu,Rongjie Yu,Jiaqi Zong ensure they are delivered throughout the entire lifecycle. Next it presents the main concepts and techniques of continuous quality control, discussing the quality control loop and its main techniques such as r978-3-642-44190-5978-3-642-38571-1
6#
發(fā)表于 2025-3-22 16:33:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:30 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:49:56 | 只看該作者
Spatial and?Temporal Guidance for?Semi-supervised Video Object Segmentationto focus on long-term object-level feature from the first frame. The proposed spatial and temporal guidance effectively alleviates mismatching and makes the model more robust and efficient. Experiments on YouTube-VOS and DAVIS benchmarks show that our method outperforms previous state-of-the-art met
10#
發(fā)表于 2025-3-23 05:52:03 | 只看該作者
Unsupervised Anomaly Segmentation for?Brain Lesions Using Dual Semantic-Manifold Reconstructionns not only on the semantic layout but also the image appearance. In this way a Dual Semantic-Manifold Reconstruction (DSMR) is trained and then used to detect the anomalies accurately. Experiments reveal that the proposed DSMR approach exceeds the state-of-the-art performance on the benchmark datas
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 05:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清水河县| 聂荣县| 高要市| 潼南县| 肥西县| 肥城市| 策勒县| 海宁市| 玛曲县| 富裕县| 新昌县| 荥阳市| 恩施市| 盖州市| 万荣县| 东丰县| 辽阳市| 习水县| 恩施市| 遵义市| 内乡县| 左云县| 镇康县| 绍兴县| 忻城县| 牙克石市| 洪江市| 科技| 枣阳市| 浪卡子县| 北宁市| 遂溪县| 乌鲁木齐县| 庆阳市| 东港市| 东光县| 弋阳县| 韶山市| 汨罗市| 梓潼县| 广汉市|