找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 19569|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:08:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標題30th International C
編輯Biao Luo,Long Cheng,Chaojie Li
視頻videohttp://file.papertrans.cn/664/663589/663589.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable
描述The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.??.The?1274?papers presented in the proceedings set were carefully reviewed and selected from?652?submissions.?.The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2024
關(guān)鍵詞Bioinformatics; Brain-machine interface; Computational finance; Computational intelligence; Control and
版次1
doihttps://doi.org/10.1007/978-981-99-8141-0
isbn_softcover978-981-99-8140-3
isbn_ebook978-981-99-8141-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:32:04 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/n/image/663589.jpg
地板
發(fā)表于 2025-3-22 05:01:41 | 只看該作者
5#
發(fā)表于 2025-3-22 12:22:42 | 只看該作者
Paper Recommendation with Multi-view Knowledge-Aware Attentive Network solve problems such as data sparsity faced by traditional recommendation methods and used GNN-based techniques to mine the features of users and papers. However, existing work has not emphasized the quality of the knowledge graph construction, and has not optimized the modeling method from the scen
6#
發(fā)表于 2025-3-22 13:01:26 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:52 | 只看該作者
Research on?Automatic Segmentation Algorithm of?Brain Tumor Image Based on?Multi-sequence Self-superllenging due to the limitations and intricacy of manual delineation. This paper presents a brain tumor image segmentation framework that addresses these challenges by leveraging multiple sequence information. The framework consists of encoder, decoder, and data fusion modules. The encoder incorporat
8#
發(fā)表于 2025-3-22 23:29:39 | 只看該作者
An Effective Morphological Analysis Framework of Intracranial Artery in 3D Digital Subtraction Angiorvention surgery. However, this task often comes with challenges of large-scale image and memory constraints. In this paper, an effective two-stage framework is proposed for fully automatic morphological analysis of intracranial artery. In the first stage, the proposed Region-Global Fusion Network (
9#
發(fā)表于 2025-3-23 04:54:40 | 只看該作者
10#
發(fā)表于 2025-3-23 09:33:42 | 只看該作者
TCNet: Texture and Contour-Aware Model for Bone Marrow Smear Region of Interest Selection it is essential to select uniformly distributed and clear sections as regions of interest (ROIs). However, current ROI selection models have not considered the characteristics of bone marrow smears, resulting in poor performance in practical applications. By comparing bone marrow smear ROIs and non
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西青区| 镇平县| 阿克陶县| 嘉义县| 石狮市| 合作市| 福泉市| 弥渡县| 阿拉尔市| 马边| 宜黄县| 嵊州市| 南平市| 津南区| 河北区| 龙里县| 通江县| 东海县| 大城县| 泰来县| 东阳市| 肥城市| 开封市| 上虞市| 巴中市| 自贡市| 阜康市| 华阴市| 望谟县| 焦作市| 铜山县| 苏州市| 横山县| 雷山县| 清水县| 博罗县| 察雅县| 南漳县| 黄平县| 武穴市| 桐梓县|