找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[復(fù)制鏈接]
查看: 48265|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:58:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標(biāo)題29th International C
編輯Mohammad Tanveer,Sonali Agarwal,Adam Jatowt
視頻videohttp://file.papertrans.cn/664/663582/663582.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (
描述The three-volume set LNCS 13623, 13624, and 13625 constitutes the refereed proceedings of the 29th International Conference on Neural Information Processing, ICONIP 2022, held as a virtual event, November 22–26, 2022..The 146 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centered Computing; and Applications..The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements..
出版日期Conference proceedings 2023
關(guān)鍵詞pattern recognition; image processing; signal processing; deep learning; neural networks; computing metho
版次1
doihttps://doi.org/10.1007/978-3-031-30105-6
isbn_softcover978-3-031-30104-9
isbn_ebook978-3-031-30105-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:49 | 只看該作者
Patch Mix Augmentation with?Dual Encoders for?Meta-Learningsing and style mix from AdaIn. Furthermore, we use both ResNet and ViT as our feature encoder. Combining with the idea of contrastive learning, we train our ViT in an unsupervised way. Experimental results show that we achieve a decent performance improvement.
板凳
發(fā)表于 2025-3-22 02:31:39 | 只看該作者
Saccade Direction Information Channelformation of the channel, is higher than in diagonal displacements. By comparing the results to our previous spatial gaze channel between Areas of Interest (AOIs) we constate that the spatial channel discriminates better between the observed images, while the direction channel discriminates better b
地板
發(fā)表于 2025-3-22 05:34:52 | 只看該作者
Shared-Attribute Multi-Graph Clustering with?Global Self-Attention layers in different graphs. 3) A novel self-supervised weighting strategy is proposed to de-emphasize unimportant graphs. Our experiments on four benchmark datasets show the superiority of SAMGC over 14 SOTA methods. The source code is available at ..
5#
發(fā)表于 2025-3-22 11:17:38 | 只看該作者
Mutual Diverse-Label Adversarial Training method called . (MDLAT). Experiments on CIFAR-10 and CIFAR-100 indicate that our method is effective in improving model robustness under different settings, and our method achieves state-of-the-art (SOTA) robustness under . attack.
6#
發(fā)表于 2025-3-22 13:50:19 | 只看該作者
Filter Pruning via?Similarity Clustering for?Deep Convolutional Neural Networksarameters on GoogLeNet, and the accuracy is even 0.09. higher than the baseline model. Moreover, on ImageNet, FPSC reduces more than 43.1. FLOPs and 42.2. parameters, the accuracy only dropped 0.66. on ResNet-50.
7#
發(fā)表于 2025-3-22 18:15:55 | 只看該作者
FPD: Feature Pyramid Knowledge Distillationhese issues, our study aims to narrow the gap in feature representation between teacher and student and obtain more feature representation from images in limited datasets to achieve better performance. In addition, the superiority of our method is all validated on a generalized dataset (CIFAR-100) a
8#
發(fā)表于 2025-3-23 00:43:14 | 只看該作者
Self-Reinforcing Feedback Domain Adaptation Channel feedback mechanism, SRFC skillfully integrates multi-level information in a robust way in the process of domain adaptation, and actively enhances the availability and comprehensive value of features in domain adaptation with manageable continuous feedback. Experiments on benchmark datasets verify t
9#
發(fā)表于 2025-3-23 04:18:12 | 只看該作者
10#
發(fā)表于 2025-3-23 09:08:14 | 只看該作者
d) class libraries, application frameworks, and design patterns. Software components provide a vehicle for planned and systematic reuse. The software community does not yet agree on what a software component is exactly. Nowadays, the term component is used as a synonym for object most of the time, but it also978-3-642-08299-3978-3-662-03345-6
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗田县| 军事| 长海县| 安顺市| 阜南县| 新密市| 汉寿县| 平武县| 高州市| 崇阳县| 双辽市| 临汾市| 抚顺市| 江门市| 常州市| 广灵县| 浦北县| 龙江县| 柞水县| 池州市| 平罗县| 红安县| 格尔木市| 义乌市| 同心县| 太湖县| 思南县| 正宁县| 五河县| 平南县| 新丰县| 拉萨市| 河东区| 朝阳县| 康平县| 绥宁县| 灵宝市| 长子县| 伊吾县| 青阳县| 文安县|