找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 13th International C Irwin King,Jun Wang,DeLiang Wang Conference proceedings 2006 Springer-Verlag Berlin Hei

[復制鏈接]
樓主: 是消毒
51#
發(fā)表于 2025-3-30 10:14:19 | 只看該作者
Automatic Detection of Critical Epochs in coma-EEG Using Independent Component Analysis and Higher Ogful dominant components from the EEG of patients in coma. A procedure for automatic critical epoch detection might support the doctor in the long time monitoring of the patients, this is why we are headed to find a procedure able to automatically quantify how much an epoch is critical or not. In th
52#
發(fā)表于 2025-3-30 12:34:28 | 只看該作者
Sparse Bump Sonification: A New Tool for Multichannel EEG Diagnosis of Mental Disorders; Applicationplications in early detection and diagnosis of early stage of Alzheimer’s disease. We propose here a novel approach based on multi channel sonification, with a time-frequency representation and sparsification process using bump modeling. The fundamental question explored in this paper is whether cli
53#
發(fā)表于 2025-3-30 19:33:54 | 只看該作者
Effect of Diffusion Weighting and Number of Sensitizing Directions on Fiber Tracking in DTI and accuracy of fiber tracking results depend on the quality of estimated DT which is determined by parameters of image acquisition protocol. The aim of this paper is to investigate what echo-planar image (EPI) acquisition parameters: the number of sensitizing directions K and diffusion weighting b
54#
發(fā)表于 2025-3-30 23:50:16 | 只看該作者
55#
發(fā)表于 2025-3-31 03:52:40 | 只看該作者
56#
發(fā)表于 2025-3-31 05:19:04 | 只看該作者
Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Ns type of breast abnormality patterns for benign and malignant class characterization using auto-associator neural network and original features. The characterized patterns are finally classified into benign and malignant classes using a classifier neural network. Grey-level based statistical featur
57#
發(fā)表于 2025-3-31 13:16:17 | 只看該作者
Evolving Hierarchical RBF Neural Networks for Breast Cancer Detectionl RBF network was employed to detect the breast cancel. For evolving a hierarchical RBF network model, Extended Compact Genetic Programming (ECGP), a tree-structure based evolutionary algorithm and the Differential Evolution (DE) are used to find an optimal detection model. The performance of propos
58#
發(fā)表于 2025-3-31 13:37:02 | 只看該作者
Ovarian Cancer Prognosis by Hemostasis and Complementary Learningnosis is required to determine the suitable therapeutic decision. Since abnormalities of hemostasis and increased risk of thrombosis are observed in cancer patient, assay involving hemostatic parameters can be potential prognosis tool. Thus a biological brain-inspired . (CLFNN) is proposed, to compl
59#
發(fā)表于 2025-3-31 18:17:24 | 只看該作者
60#
發(fā)表于 2025-3-31 23:28:28 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乌兰浩特市| 宜城市| 札达县| 龙南县| 梁山县| 罗城| 田阳县| 渝中区| 四会市| 静安区| 临西县| 修文县| 繁昌县| 长武县| 利辛县| 阳泉市| 梁平县| 饶阳县| 金沙县| 安阳县| 吴旗县| 乳山市| 和政县| 克什克腾旗| 曲麻莱县| 卢氏县| 图木舒克市| 景洪市| 霍城县| 鄂尔多斯市| 文安县| 灵石县| 仙桃市| 高清| 胶南市| 英吉沙县| 桦川县| 东平县| 栾川县| 华阴市| 普兰县|