找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 21st International C Chu Kiong Loo,Keem Siah Yap,Kaizhu Huang Conference proceedings 2014 Springer Internati

[復(fù)制鏈接]
查看: 8647|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:24:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Information Processing
副標(biāo)題21st International C
編輯Chu Kiong Loo,Keem Siah Yap,Kaizhu Huang
視頻videohttp://file.papertrans.cn/664/663571/663571.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 21st International C Chu Kiong Loo,Keem Siah Yap,Kaizhu Huang Conference proceedings 2014 Springer Internati
描述The three volume set LNCS 8834, LNCS 8835, and LNCS 8836 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2014, held in Kuching, Malaysia, in November 2014. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The selected papers cover major topics of theoretical research, empirical study, and applications of neural information processing research. The 3 volumes represent topical sections containing articles on cognitive science, neural networks and learning systems, theory and design, applications, kernel and statistical methods, evolutionary computation and hybrid intelligent systems, signal and image processing, and special sessions intelligent systems for supporting decision, making processes,theories and applications, cognitive robotics, and learning systems for social network and web mining.
出版日期Conference proceedings 2014
關(guān)鍵詞activity recognition; artificial intelligence; big data; bio-inspired computing; brain-computer interfac
版次1
doihttps://doi.org/10.1007/978-3-319-12640-1
isbn_softcover978-3-319-12639-5
isbn_ebook978-3-319-12640-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:49 | 只看該作者
Neural Information Processing978-3-319-12640-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 00:39:51 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/n/image/663571.jpg
地板
發(fā)表于 2025-3-22 06:06:46 | 只看該作者
https://doi.org/10.1007/978-3-319-12640-1activity recognition; artificial intelligence; big data; bio-inspired computing; brain-computer interfac
5#
發(fā)表于 2025-3-22 10:23:58 | 只看該作者
Non-negative Matrix Factorization with Schatten p-norms Reguralizationlarization terms were previously added to the NMF objective function in order to produce sparser results and thus to obtain a more qualitative partition of data. We would like to propose the general framework for regularized NMF based on Schatten p-norms. Experimental results show the effectiveness of our approach on different data sets.
6#
發(fā)表于 2025-3-22 14:51:35 | 只看該作者
A New Energy Model for the Hidden Markov Random Fieldsood energy function of the Hidden Markov Random Fields model based on the Hidden Markov Model formalism. With this new energy model, we aim at (1) avoiding the use of a key parameter chosen empirically on which the results of the current models are heavily relying, (2) proposing an information rich modelisation of neighborhood relationships.
7#
發(fā)表于 2025-3-22 21:01:29 | 只看該作者
Graph Kernels Exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensionsing phase of the nodes based on test-specific information extracted from the graph, for example the set of neighbours of a node. We defined a novel relabelling and derived two kernels of the framework from it. The novel kernels are very fast to compute and achieve state-of-the-art results on five real-world datasets.
8#
發(fā)表于 2025-3-22 22:59:06 | 只看該作者
A New Ensemble Clustering Method Based on Dempster-Shafer Evidence Theory and Gaussian Mixture Modelsults from single clustering methods. We introduce the GMM technique to determine the confidence values for candidate results from each clustering method. Then we employ the DS theory to combine the evidences supplied by different clustering methods, based on which the final result is obtained. We t
9#
發(fā)表于 2025-3-23 03:46:39 | 只看該作者
Extraction of Dimension Reduced Features from Empirical Kernel Vectorping to make the trained classifier by using the linear SVM with the extracted feature vectors equivalent to the one obtained by the standard kernel SVM. The proposed feature extraction mapping is defined by using the eigen values and eigen vectors of the Gram matrix. Since the eigen vector problem
10#
發(fā)表于 2025-3-23 09:29:08 | 只看該作者
Method of Evolving Non-stationary Multiple Kernel Learningimal mapping model in a large high-dimensional feature space. However, it is not suitable to compute the composite kernel in a stationary way for all samples. In this paper, we propose a method of evolving non-stationary multiple kernel learning, in which base kernels are encoded as tree kernels and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲阜市| 瓦房店市| 卓尼县| 蕲春县| 乌海市| 大新县| 建昌县| 乌兰浩特市| 洛浦县| 隆回县| 尼木县| 大埔区| 台北县| 合阳县| 清新县| 那坡县| 万载县| 安义县| 唐海县| 宁明县| 柏乡县| 北海市| 陇西县| 开平市| 阳山县| 马公市| 惠来县| 通辽市| 福泉市| 南和县| 奉新县| 邹平县| 博白县| 洛宁县| 昆山市| 淮南市| 塔城市| 会宁县| 澄江县| 扎囊县| 彭山县|