找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Approximations for Optimal Control and Decision; Riccardo Zoppoli,Marcello Sanguineti,Thomas Parisi Book 2020 Springer Nature Switz

[復(fù)制鏈接]
查看: 32367|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:14:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision
編輯Riccardo Zoppoli,Marcello Sanguineti,Thomas Parisi
視頻videohttp://file.papertrans.cn/664/663531/663531.mp4
概述Material is an up-to-date treatment of optimal control problems which have thus far been difficult to solve.Applications selected have major current interest: routing in communications networks, freew
叢書(shū)名稱(chēng)Communications and Control Engineering
圖書(shū)封面Titlebook: Neural Approximations for Optimal Control and Decision;  Riccardo Zoppoli,Marcello Sanguineti,Thomas Parisi Book 2020 Springer Nature Switz
描述.Neural Approximations for Optimal Control and Decision.?provides a comprehensive methodology for the approximate solution of functional optimization problems using neural networks and other nonlinear approximators where the use of traditional optimal control tools is prohibited by complicating factors like non-Gaussian noise, strong nonlinearities, large dimension of state and control vectors, etc...Features of the text include:..? a general functional optimization framework;..? thorough illustration of recent theoretical insights into the approximate solutions of complex functional optimization problems;..? comparison of classical and neural-network based methods of approximate solution;..? bounds to the errors of approximate solutions;..? solution algorithms for optimal control and decision in deterministic or stochastic environments with perfect or imperfect state measurements over a finite or infinite time horizon and with onedecision maker or several;..? applications of current interest: routing in communications networks, traffic control, water resource management, etc.;?and..? numerous, numerically detailed examples...The authors’ diverse backgrounds in systems and control
出版日期Book 2020
關(guān)鍵詞Bellman‘s Curse of Dimensionality; Control; Control Engineering; Control Theory; Decision Engineering; Ne
版次1
doihttps://doi.org/10.1007/978-3-030-29693-3
isbn_ebook978-3-030-29693-3Series ISSN 0178-5354 Series E-ISSN 2197-7119
issn_series 0178-5354
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision影響因子(影響力)




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision被引頻次




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision被引頻次學(xué)科排名




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision年度引用




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision年度引用學(xué)科排名




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision讀者反饋




書(shū)目名稱(chēng)Neural Approximations for Optimal Control and Decision讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:41 | 只看該作者
地板
發(fā)表于 2025-3-22 05:07:52 | 只看該作者
Design of Mathematical Models by Learning From Data and FSP Functions,es one to reduce the number of samples (under the same accuracy) and to obtain upper bounds on the errors in deterministic terms rather than in probabilistic ones. Deterministic learning relies on some basic quantities such as variation and discrepancy. Special families of deterministic sequences ca
5#
發(fā)表于 2025-3-22 11:04:43 | 只看該作者
6#
發(fā)表于 2025-3-22 16:14:04 | 只看該作者
,Deterministic Optimal Control over?a?Finite Horizon,l growth of the number of samples, and thus to the curse of dimensionality. Therefore, the discretization by deterministic sequences of samples is addressed, which spread the samples in the most uniform way. Specifically, low-discrepancy sequences are considered, like quasi-Monte Carlo sequences. We
7#
發(fā)表于 2025-3-22 19:36:33 | 只看該作者
8#
發(fā)表于 2025-3-22 23:22:16 | 只看該作者
,Stochastic Optimal Control with?Imperfect State Information over a Finite Horizon,arameters. Of course, if the number of decision stages is large, the application of the ERIM is also impossible. Therefore, an approximate approach is followed by truncating the information vector and retaining in the memory only a suitable “l(fā)imited-memory information vector.”
9#
發(fā)表于 2025-3-23 02:56:07 | 只看該作者
Team Optimal Control Problems, takes particular forms. On the contrary, the “extended Ritz method” (ERIM) can be always applied. The ERIM consists in substituting the admissible functions with fixed-structure parametrized functions containing vectors of “free” parameters. The ERIM is tested in two case studies. The former is the
10#
發(fā)表于 2025-3-23 06:11:49 | 只看該作者
Optimal Control Problems over an Infinite Horizon, “extended Ritz method” and implemented through fixed-structure parametrized functions containing vectors of “free” parameters. Conditions are established on the maximum allowable approximation errors so as to ensure the boundedness of the state trajectories.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽清县| 漠河县| 高雄市| 汕尾市| 左贡县| 威远县| 平泉县| 北票市| 长兴县| 江油市| 古浪县| 辽阳市| 安达市| 松原市| 盐城市| 东明县| 婺源县| 肇庆市| 麻城市| 闸北区| 科技| 德保县| 许昌市| 长丰县| 获嘉县| 南平市| 犍为县| 南汇区| 和顺县| 合肥市| 巫山县| 玉山县| 肃宁县| 九寨沟县| 永昌县| 盱眙县| 丹东市| 城口县| 大城县| 金湖县| 邳州市|