找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Network and Parallel Computing; 17th IFIP WG 10.3 In Xin He,En Shao,Guangming Tan Conference proceedings 2021 IFIP International Federation

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:15:00 | 只看該作者
A Dynamic Protection Mechanism for?GPU Memory Overflowd healthcare. However, most existing researches just focus on the performance but ignore the security issues of GPUs. In this paper, we design an efficient mechanism to dynamically monitor GPU heap buffer overflow by using the CPU. Concretely, we first analyze the specific requirements of GPU memory
22#
發(fā)表于 2025-3-25 11:03:23 | 只看該作者
MTLAT: A Multi-Task Learning Framework Based on Adversarial Training for Chinese Cybersecurity NER Chinese cybersecurity texts contain not only a large number of professional security domain entities but also many English person and organization entities, as well as a large number of Chinese-English mixed entities. Chinese Cybersecurity NER is a domain-specific task, current models rarely focus
23#
發(fā)表于 2025-3-25 12:26:27 | 只看該作者
Learning-Based Evaluation of Routing Protocol in Vehicular Network Using WEKAlogy and communication links frequently change due to the high mobility of vehicles. So, the key challenge of our work is to choose the best routing protocol using machine learning algorithms. When choosing routing protocol, most research focuses on the improvement of the performance of specific rou
24#
發(fā)表于 2025-3-25 18:53:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:53:42 | 只看該作者
26#
發(fā)表于 2025-3-26 03:13:00 | 只看該作者
27#
發(fā)表于 2025-3-26 04:37:35 | 只看該作者
28#
發(fā)表于 2025-3-26 08:47:43 | 只看該作者
Deep Visible and Thermal Image Fusion with Cross-Modality Feature Selection for?Pedestrian DetectionGB and thermal images respectively, and these features are fused with a cross-modality feature selection module for detection. It includes the following stages. First, we learn features from paired RGB and thermal images through a backbone network with a residual structure, and add a feature squeeze
29#
發(fā)表于 2025-3-26 16:33:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:26:48 | 只看該作者
Security Situation Prediction of Network Based on Lstm Neural Network threats. In view of the single source of information and the lack of time attributes of the existing methods, we propose an optimal network security situation prediction model based on lstm neural network. We employ the stochastic gradient descent method as the minimum training loss to establish a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
璧山县| 大足县| 诏安县| 囊谦县| 尉犁县| 洛川县| 泉州市| 广灵县| 沈丘县| 高青县| 遵化市| 汉川市| 宜兴市| 正安县| 高密市| 九寨沟县| 井研县| 营口市| 辉南县| 平定县| 白山市| 信丰县| 安顺市| 天峻县| 和林格尔县| 中卫市| 漠河县| 铅山县| 新密市| 庆阳市| 固镇县| 汕头市| 门源| 乌兰浩特市| 碌曲县| 汉沽区| 郯城县| 贵州省| 仲巴县| 县级市| 大化|