找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Network Topology and Fault-Tolerant Consensus; Dimitris Sakavalas,Lewis Tseng Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: Entangle
11#
發(fā)表于 2025-3-23 09:41:07 | 只看該作者
978-3-031-00886-3Springer Nature Switzerland AG 2019
12#
發(fā)表于 2025-3-23 14:50:15 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:00 | 只看該作者
Synthesis Lectures on Distributed Computing Theoryhttp://image.papertrans.cn/n/image/662861.jpg
14#
發(fā)表于 2025-3-23 23:35:38 | 只看該作者
15#
發(fā)表于 2025-3-24 04:06:44 | 只看該作者
Relay Depth and Approximate Consensusm number of hops that information (or a message) can be propagated (or relayed). This constraint is common in large-scale networks, and are used to avoid memory overload and network congestion, e.g., neighbor table and Time to live (TTL) (or hop limit) in the Internet Protocol.
16#
發(fā)表于 2025-3-24 09:51:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:26:06 | 只看該作者
General Adversaryosed by Hirt and Maurer in [40]. This model encompasses all known adversary models with respect to the definition of corruptible sets. Specifically, the corruptible sets of processes are described by a monotone family of sets.
18#
發(fā)表于 2025-3-24 15:20:36 | 只看該作者
Byzantine Fault ToleranceIn this chapter, we discuss Byzantine consensus algorithms in both synchronous and asynchronous systems. We first discuss implications of the related results and introduce a useful notion—reduced graphs. Then, we present the results on iterative algorithms (using Definitions 2.14 and 2.15) followed by general algorithms (using Definition 2.11).
19#
發(fā)表于 2025-3-24 20:42:38 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通榆县| 荣成市| 织金县| 牟定县| 七台河市| 琼结县| 太仓市| 云浮市| 南丹县| 苍溪县| 桃江县| 邵武市| 留坝县| 滦平县| 云安县| 大名县| 定陶县| 满城县| 治多县| 韩城市| 无锡市| 恩平市| 治县。| 吴旗县| 响水县| 夹江县| 兰州市| 海淀区| 宁国市| 伊金霍洛旗| 深圳市| 新津县| 勃利县| 柘城县| 图片| 蕉岭县| 高陵县| SHOW| 灵台县| 腾冲县| 松原市|