找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Network Intrusion Detection using Deep Learning; A Feature Learning A Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra Ta Book 2018 The Auth

[復(fù)制鏈接]
查看: 14511|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:42:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning
副標(biāo)題A Feature Learning A
編輯Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra Ta
視頻videohttp://file.papertrans.cn/663/662813/662813.mp4
概述Surveys deep learning-based IDSs.Suggests future directions for IDS research.Describes how to apply deep learning in IDS.Discusses learning for better attack detection
叢書(shū)名稱(chēng)SpringerBriefs on Cyber Security Systems and Networks
圖書(shū)封面Titlebook: Network Intrusion Detection using Deep Learning; A Feature Learning A Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra Ta Book 2018 The Auth
描述.This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. ?In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. ..Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity..
出版日期Book 2018
關(guān)鍵詞Security and Privacy; Intrusion Detection System; Detection of unknown attacks; Anomaly detection; Deep
版次1
doihttps://doi.org/10.1007/978-981-13-1444-5
isbn_softcover978-981-13-1443-8
isbn_ebook978-981-13-1444-5Series ISSN 2522-5561 Series E-ISSN 2522-557X
issn_series 2522-5561
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning影響因子(影響力)




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning被引頻次




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning被引頻次學(xué)科排名




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning年度引用




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning年度引用學(xué)科排名




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning讀者反饋




書(shū)目名稱(chēng)Network Intrusion Detection using Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:43:45 | 只看該作者
Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra Tanuwidjajaroviding valuable insight into their genetic foundation. Genome wide association studies (GWASs) have been particularly informative with respect to complex diseases whose manifestation depends on a multitude of genetic and environmental factors. In these studies, common Single Nucleotide Polymorphis
地板
發(fā)表于 2025-3-22 04:50:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:06:19 | 只看該作者
Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra Tanuwidjajaroviding valuable insight into their genetic foundation. Genome wide association studies (GWASs) have been particularly informative with respect to complex diseases whose manifestation depends on a multitude of genetic and environmental factors. In these studies, common Single Nucleotide Polymorphis
6#
發(fā)表于 2025-3-22 15:03:26 | 只看該作者
7#
發(fā)表于 2025-3-22 19:52:44 | 只看該作者
Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra TanuwidjajaPs their role in human variation.Offers a unique broad surve.This book explores the importance of Single Nucleotide Polymorphisms (SNPs) in biomedical research. As SNP technologies have evolved from labor intensive, expensive, time-consuming processes to relatively inexpensive methods, SNP discovery
8#
發(fā)表于 2025-3-22 23:12:35 | 只看該作者
Kwangjo Kim,Muhamad Erza Aminanto,Harry Chandra Tanuwidjaja can be purified from natural sources, but in many cases, expression systems are required to produce recombinant proteins at sufficiently high levels. Nevertheless, the mRNAs for many such proteins contain intrinsic features that limit protein production. In eukaryotes, these features include crypti
9#
發(fā)表于 2025-3-23 01:39:09 | 只看該作者
can be purified from natural sources, but in many cases, expression systems are required to produce recombinant proteins at sufficiently high levels. Nevertheless, the mRNAs for many such proteins contain intrinsic features that limit protein production. In eukaryotes, these features include crypti
10#
發(fā)表于 2025-3-23 07:14:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林市| 田阳县| 福泉市| 昌江| 渭南市| 海城市| 宝鸡市| 中宁县| 山东省| 乌拉特后旗| 土默特左旗| 神池县| 毕节市| 全椒县| 武清区| 湖口县| 五台县| 仪征市| 贺州市| 青浦区| 乃东县| 长治市| 大庆市| 建昌县| 佛教| 乐陵市| 乌苏市| 曲靖市| 大足县| 图木舒克市| 阿鲁科尔沁旗| 固阳县| 新沂市| 兴化市| 长治县| 龙里县| 吴忠市| 盈江县| 兴隆县| 余姚市| 祁东县|