找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Network Analysis Literacy; A Practical Approach Katharina A. Zweig Book 2016 Springer-Verlag GmbH Austria 2016 Complex network analysis.Net

[復(fù)制鏈接]
查看: 44908|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:43:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Network Analysis Literacy
副標題A Practical Approach
編輯Katharina A. Zweig
視頻videohttp://file.papertrans.cn/663/662765/662765.mp4
概述Teaches how to pose a defined network analytic question.Demonstrates how to design the best model for describing a given graph.Aids in choosing or designing the best random graph model for comparing a
叢書名稱Lecture Notes in Social Networks
圖書封面Titlebook: Network Analysis Literacy; A Practical Approach Katharina A. Zweig Book 2016 Springer-Verlag GmbH Austria 2016 Complex network analysis.Net
描述.This book?presents a perspective of network analysis as a tool?to find?and quantify significant structures in the interaction patterns between different types of??entities. Moreover, network analysis provides the basic means to relate these structures to properties of the entities.?It has proven itself to be useful for the analysis of biological and social networks, but also for networks describing complex systems in economy, psychology, geography, and various other fields. Today, network analysis packages in the open-source platform R and other open-source software projects enable scientists from all?fields to quickly apply network analytic methods to their data sets. Altogether, these applications offer such a wealth of network analytic methods that it can be overwhelming for someone just entering this field. This book provides a road map through this jungle of network analytic methods, offers advice on how to pick the best method for a given network analytic project, and how to avoid common pitfalls. It introduces the methods which are most often used to analyze complex networks, e.g., different global network measures, types of random graph models, centrality indices, and netw
出版日期Book 2016
關(guān)鍵詞Complex network analysis; Network science; Centrality in netowrks; Network motifs; Random graph models; E
版次1
doihttps://doi.org/10.1007/978-3-7091-0741-6
isbn_softcover978-3-7091-4877-8
isbn_ebook978-3-7091-0741-6Series ISSN 2190-5428 Series E-ISSN 2190-5436
issn_series 2190-5428
copyrightSpringer-Verlag GmbH Austria 2016
The information of publication is updating

書目名稱Network Analysis Literacy影響因子(影響力)




書目名稱Network Analysis Literacy影響因子(影響力)學科排名




書目名稱Network Analysis Literacy網(wǎng)絡(luò)公開度




書目名稱Network Analysis Literacy網(wǎng)絡(luò)公開度學科排名




書目名稱Network Analysis Literacy被引頻次




書目名稱Network Analysis Literacy被引頻次學科排名




書目名稱Network Analysis Literacy年度引用




書目名稱Network Analysis Literacy年度引用學科排名




書目名稱Network Analysis Literacy讀者反饋




書目名稱Network Analysis Literacy讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:49:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:29 | 只看該作者
Definitionsear in the main text; as the readership is intended to be very diverse, here all necessary definitions are discussed in detail. It may thus be skipped upon first reading and referred to if basic notions are unfamiliar for the reader.
地板
發(fā)表于 2025-3-22 07:21:53 | 只看該作者
Classic Network Analytic Measures to provide readers with a first impression of the structure of the graph. In this chapter various measures are described, such as the average clustering coefficient, reciprocity and transitivity, connectivity, size and the number of connected components, the graph density, its diameter, and the deg
5#
發(fā)表于 2025-3-22 10:20:56 | 只看該作者
Random Graphs and Network Modelsaphs, a so-called .. Structures which are found to be significantly different from those expected in the random graph model require a new random graph model which exemplifies how the structure might emerge in the complex network. In this chapter the most common random graph models are introduced: th
6#
發(fā)表于 2025-3-22 15:41:22 | 只看該作者
Random Graphs as Null Models-random in many aspects. This chapter focuses on the question of how to quantify the statistical significance of an observed network structure with respect to a given random graph model. The chapter starts with a discussion of the statistical significance of a given percentage of reciprocal edges in
7#
發(fā)表于 2025-3-22 17:43:03 | 只看該作者
8#
發(fā)表于 2025-3-22 22:20:56 | 只看該作者
Centrality Indicesthe complex system modeled by the network. As the perceived importance is dependent on the kind of network to be analyzed, different centrality indices have been proposed over the years. This chapter gives a short overview of the most important centrality indices, a characterization of centrality in
9#
發(fā)表于 2025-3-23 02:10:14 | 只看該作者
10#
發(fā)表于 2025-3-23 05:37:33 | 只看該作者
Literacy: When Is a Network Model Explanatory?they predict certain behaviors and functions, and they can be used as null-models. In this chapter, the question discussed is whether the classic network models are likely to be . network models for complex systems like metabolic networks, the internet, or collaboration networks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 贵定县| 邛崃市| 紫云| 济阳县| 冕宁县| 甘谷县| 河北省| 陇西县| 酉阳| 大厂| 瑞丽市| 冷水江市| 米泉市| 高州市| 慈利县| 敦化市| 滦平县| 阿拉善左旗| 平和县| 邳州市| 广南县| 于都县| 鸡东县| 泸水县| 交口县| 米林县| 福清市| 铜川市| 肇州县| 南昌县| 塔河县| 两当县| 元朗区| 海阳市| 阳春市| 泸定县| 太保市| 精河县| 易门县| 洛川县|