找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Net Gain; Profit im Netz John Hagel,Arthur G. Armstrong Book 1999 Springer Fachmedien Wiesbaden 1999 Erfolg.Management.Markt.Marktpositioni

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:01:24 | 只看該作者
n the field of neural indexing. By learning a single neural network model that approximates the .-nearest neighbor distance bounds for all points in a database, the storage complexity of the proposed index structure is reduced to . while the index is still able to guarantee exact query results. As s
22#
發(fā)表于 2025-3-25 10:16:55 | 只看該作者
John Hagel III,Arthur G. Armstrongn the field of neural indexing. By learning a single neural network model that approximates the .-nearest neighbor distance bounds for all points in a database, the storage complexity of the proposed index structure is reduced to . while the index is still able to guarantee exact query results. As s
23#
發(fā)表于 2025-3-25 14:39:16 | 只看該作者
John Hagel III,Arthur G. Armstrongn the field of neural indexing. By learning a single neural network model that approximates the .-nearest neighbor distance bounds for all points in a database, the storage complexity of the proposed index structure is reduced to . while the index is still able to guarantee exact query results. As s
24#
發(fā)表于 2025-3-25 16:55:41 | 只看該作者
John Hagel III,Arthur G. Armstrongr of distance calculations. We applied our technique in the Slim-tree and performed experiments over real data sets showing that the proposed technique is able to reduce the execution time of both range and .-nearest queries to at least half of the Slim-tree. Moreover, this technique is general to b
25#
發(fā)表于 2025-3-25 22:13:29 | 只看該作者
John Hagel III,Arthur G. Armstrongr of distance calculations. We applied our technique in the Slim-tree and performed experiments over real data sets showing that the proposed technique is able to reduce the execution time of both range and .-nearest queries to at least half of the Slim-tree. Moreover, this technique is general to b
26#
發(fā)表于 2025-3-26 02:46:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:54:14 | 只看該作者
29#
發(fā)表于 2025-3-26 12:52:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:19 | 只看該作者
John Hagel III,Arthur G. Armstrong solution..As dimensionality increases, the number of defined regions must increase, but the memory required for the exclusion calculation does not. We show that the technique gives excellent performance over the SISAP benchmark data sets, and most interestingly we show how increases in dimensionali
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷波县| 东源县| 张家口市| 来安县| 新乡县| 和林格尔县| 巴东县| 云安县| 龙游县| 富源县| 鲁山县| 宜兴市| 林甸县| 彝良县| 通榆县| 石嘴山市| 桑日县| 湘潭县| 通渭县| 修水县| 长兴县| 祁连县| 常宁市| 沙坪坝区| 准格尔旗| 马关县| 巨鹿县| 鞍山市| 湖州市| 武平县| 阆中市| 奉节县| 青铜峡市| 麦盖提县| 分宜县| 安阳市| 青阳县| 荣昌县| 恩施市| 洞头县| 漳浦县|