找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Need-Based Distributive Justice; An Interdisciplinary Stefan Traub,Bernhard Kittel Book 2020 Springer Nature Switzerland AG 2020 Distributi

[復(fù)制鏈接]
樓主: Hazardous
11#
發(fā)表于 2025-3-23 09:41:47 | 只看該作者
12#
發(fā)表于 2025-3-23 15:49:06 | 只看該作者
Need-Based Justice and Distribution Procedures: The Perspective of Economics,of redistribution both in macro-empirical and experimental work. We present evidence that moderate levels of redistribution are due to the preferences of individuals rather than other possible explanations, such as the interests of elites or institutions. Particularly, we find that moderate redistri
13#
發(fā)表于 2025-3-23 21:06:18 | 只看該作者
14#
發(fā)表于 2025-3-24 01:37:30 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:17 | 只看該作者
Stefan Traubed over .. The triple (.,ρ) or simply ρ is called . over . if the Weil criterion [9, p. 20] for the convergence of the integral over ../.. of the generalized theta-series .is satisfied. (The subscript . denotes the adelization functor relative to . and ? is an arbitrary Schwartz-Bruhat function on .
16#
發(fā)表于 2025-3-24 08:16:49 | 只看該作者
Mark Siebel,Thomas Schrammeed over .. The triple (.,ρ) or simply ρ is called . over . if the Weil criterion [9, p. 20] for the convergence of the integral over ../.. of the generalized theta-series .is satisfied. (The subscript . denotes the adelization functor relative to . and ? is an arbitrary Schwartz-Bruhat function on .
17#
發(fā)表于 2025-3-24 12:55:04 | 只看該作者
18#
發(fā)表于 2025-3-24 16:04:40 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:24 | 只看該作者
Frank Nullmeier,Tanja Pritzlaff-Scheele,Kai-Uwe Schnapp,Markus Tepes; Cauchy (1844) in the contemporary formulation) and Picard (1879) on the nonexistence of nonconstant holomorphic functions .: ?→. = {.∈ ?: |.| < 1} and .: ?→?{0, 1}. The first results on the finiteness of sets of holomorphic maps were obtained in the second half of the past century within the fram
20#
發(fā)表于 2025-3-25 03:08:07 | 只看該作者
Andreas Nicklisch,Fabian Paetzel: to bring together all objects of a single type in analytic geometry, for example, all Riemann surfaces of given genus; to organize them by joining them into a fiber space; to describe the base of this space—the moduli space; to introduce on it an analytic structure; and to study the natural parame
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
登封市| 山丹县| 阿荣旗| 固原市| 萨嘎县| 绵竹市| 晋州市| 进贤县| 岗巴县| 吴忠市| 伊吾县| 石河子市| 红河县| 祥云县| 宜兰县| 哈巴河县| 东明县| 南木林县| 合作市| 大英县| 大新县| 保靖县| 夏津县| 奉新县| 连云港市| 嘉义县| 东至县| 新源县| 从江县| 佛山市| 谢通门县| 扎赉特旗| 长沙县| 新巴尔虎左旗| 临猗县| 始兴县| 米易县| 海伦市| 堆龙德庆县| 大丰市| 将乐县|