找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearrings, Nearfields and K-Loops; Proceedings of the C Gerhard Saad,Momme Johs Thomsen Conference proceedings 1997 Kluwer Academic Publish

[復制鏈接]
樓主: incompatible
31#
發(fā)表于 2025-3-26 22:47:39 | 只看該作者
On Involution Sets Induced by Neardomainsfinite or of characteristic 3 has the property: .. is a group if . is embeddable in a sharply 2-transitive permutation group. The main result of this paper is that this holds in general: For each specific involution set . which is finite or of characteristic 3 holds: .. is a group.
32#
發(fā)表于 2025-3-27 02:22:38 | 只看該作者
33#
發(fā)表于 2025-3-27 08:26:00 | 只看該作者
t der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of th
34#
發(fā)表于 2025-3-27 10:05:07 | 只看該作者
35#
發(fā)表于 2025-3-27 16:25:31 | 只看該作者
Ordered Nearfieldsogies of nearfield orders were studied by H. Wefelscheid [23]. He remarked that they need not be nearfield topologies. D. Gr?ger [4] added numerous new results and investigated .-couplings on ordered transcendental field extensions at great length.
36#
發(fā)表于 2025-3-27 20:53:03 | 只看該作者
37#
發(fā)表于 2025-3-27 21:55:04 | 只看該作者
The Structure of Ω-Groupsxisting for groups or rings (non-associative). Two fundamental notions relating to these algebras are those of nilpotency and solubility. It is not immediately clear that for these algebras such notions can be unified. However, reasonably deep underlying unification, that also includes all Ω-groups can be achieved.
38#
發(fā)表于 2025-3-28 02:57:28 | 只看該作者
Involutions on Universal AlgebrasFocus then turns to algebras with two binary operations, particularly near-rings and rings. Subdirectly irreducible objects in the categories of distributive near-rings and of rings are characterized in greater detail, with close attention given to their additive structure.
39#
發(fā)表于 2025-3-28 07:30:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:53:47 | 只看該作者
Gary F. Birkenmeier,Henry E. Heatherly,Günter F. Pilz
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黄浦区| 织金县| 姚安县| 镶黄旗| 天镇县| 河北省| 云南省| 抚州市| 苍南县| 枣强县| 同德县| 乌苏市| 岫岩| 巴东县| 岑溪市| 塔河县| 正镶白旗| 探索| 丹阳市| 塔河县| 和硕县| 商水县| 神木县| 宁城县| 苍梧县| 洛宁县| 乌苏市| 中宁县| 乌拉特前旗| 那坡县| 磴口县| 抚松县| 五华县| 玛多县| 施甸县| 曲松县| 贡嘎县| 绥宁县| 巴马| 玛纳斯县| 鄂州市|