找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearrings and Nearfields; Proceedings of the C Hubert Kiechle,Alexander Kreuzer,Momme Johs Thomse Conference proceedings 2005 Springer Scie

[復(fù)制鏈接]
查看: 31796|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:28:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nearrings and Nearfields
副標(biāo)題Proceedings of the C
編輯Hubert Kiechle,Alexander Kreuzer,Momme Johs Thomse
視頻videohttp://file.papertrans.cn/663/662330/662330.mp4
概述Original research articles not published in other places.Up-to-date survey papers dealing with particularly active research areas
圖書封面Titlebook: Nearrings and Nearfields; Proceedings of the C Hubert Kiechle,Alexander Kreuzer,Momme Johs Thomse Conference proceedings 2005 Springer Scie
出版日期Conference proceedings 2005
關(guān)鍵詞Algebra; Algebraic structure; Cohomology; Group theory; Matrix; brandonwiskunde; ring theory
版次1
doihttps://doi.org/10.1007/1-4020-3391-5
isbn_softcover978-90-481-6850-7
isbn_ebook978-1-4020-3391-9
copyrightSpringer Science+Business Media B.V. 2005
The information of publication is updating

書目名稱Nearrings and Nearfields影響因子(影響力)




書目名稱Nearrings and Nearfields影響因子(影響力)學(xué)科排名




書目名稱Nearrings and Nearfields網(wǎng)絡(luò)公開度




書目名稱Nearrings and Nearfields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nearrings and Nearfields被引頻次




書目名稱Nearrings and Nearfields被引頻次學(xué)科排名




書目名稱Nearrings and Nearfields年度引用




書目名稱Nearrings and Nearfields年度引用學(xué)科排名




書目名稱Nearrings and Nearfields讀者反饋




書目名稱Nearrings and Nearfields讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:06 | 只看該作者
Zero-Divisor Graphs of Nearrings and Semigroupse presented. All possible zero-divisor graphs of nearrings with identity in which the graph has less than five vertices are classified, and the additive group of each nonring is identified. Following the example of [7], we include a table of nearrings with identity of orders between sixteen and thirty-one.
板凳
發(fā)表于 2025-3-22 01:00:35 | 只看該作者
A Right Radical for Right D.G. Near-Ringsin near-rings with suitable chain conditions between .(.), the (left) radicals and the intersection of all maximal right ideals, denoted .(.). In particular we prove that .(.) = .(.) for near-rings . satisfying the descending chain condition for left .-subgroups of ..
地板
發(fā)表于 2025-3-22 05:27:25 | 只看該作者
Some Recent Developments in Group Near-Ringsroup near-rings. We present here an account of some of the recent work on group near-rings, emphasizing the parallels with matrix near-rings and the most recent developments. Much of this work was done in collaboration with J. H. Meyer.
5#
發(fā)表于 2025-3-22 12:26:06 | 只看該作者
6#
發(fā)表于 2025-3-22 16:43:13 | 只看該作者
The ,-Constrained Conjectures definition. A 3-tame nearing . has a unique maximal locally .-nilpotent right .-subgroup .(.). This right .-subgroup is an ideal. It is shown that if, for a compatible nearing . with .(.) is .-constrained, then all Fitting factors of faithful compatible .-groups are .-isomorphic. A number of other
7#
發(fā)表于 2025-3-22 19:30:48 | 只看該作者
Zero-Divisor Graphs of Nearrings and Semigroupsly, these ideas have been adapted to semigroups by DeMeyer, McKenzie, and Schneider [10]. Results concerning the properties of graphs of semigroups are presented. All possible zero-divisor graphs of nearrings with identity in which the graph has less than five vertices are classified, and the additi
8#
發(fā)表于 2025-3-22 23:04:13 | 只看該作者
9#
發(fā)表于 2025-3-23 02:00:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:48:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南皮县| 平度市| 阜康市| 临颍县| 鸡东县| 富蕴县| 元朗区| 四平市| 宜良县| 平塘县| 望奎县| 石渠县| 定陶县| 南郑县| 大宁县| 大埔县| 多伦县| 夏邑县| 鄯善县| 淳安县| 巧家县| 营山县| 贵定县| 山丹县| 呼图壁县| 商水县| 义乌市| 安庆市| 方城县| 屯留县| 景谷| 陇西县| 鄱阳县| 嘉兴市| 康定县| 济南市| 安龙县| 西乌珠穆沁旗| 徐水县| 措勤县| 凤台县|