找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearly Integrable Infinite-Dimensional Hamiltonian Systems; Sergej B. Kuksin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Hamiltonian

[復(fù)制鏈接]
樓主: 萬能
11#
發(fā)表于 2025-3-23 11:53:52 | 只看該作者
Book 1993, stating thatsolutions of the unperturbed equation that are quasiperiodicin time mostly persist in the perturbed one. The theoremisapplied to classical nonlinear PDE‘s with one-dimensionalspacevariable such as the nonlinear string and nonlinearSchr|dinger equation andshow that the equations have"re
12#
發(fā)表于 2025-3-23 16:38:36 | 只看該作者
Book 1993terest tomathematicians andphysicists working with nonlinear PDE‘s.An extensivesummary of the results and of related topics isprovided in the Introduction. All the nontraditionalmaterial used is discussed in the firstpart of the book andin five appendices.
13#
發(fā)表于 2025-3-23 22:06:54 | 只看該作者
0075-8434 s be of interest tomathematicians andphysicists working with nonlinear PDE‘s.An extensivesummary of the results and of related topics isprovided in the Introduction. All the nontraditionalmaterial used is discussed in the firstpart of the book andin five appendices.978-3-540-57161-2978-3-540-47920-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
14#
發(fā)表于 2025-3-23 22:44:43 | 只看該作者
hese partnerships involve an array of target audiences,ranging across the individual life span from infancy through old ageand involving a diverse set of groups978-1-4613-7297-4978-1-4615-5053-2Series ISSN 1566-7081
15#
發(fā)表于 2025-3-24 03:57:28 | 只看該作者
16#
發(fā)表于 2025-3-24 07:45:16 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:03 | 只看該作者
Symplectic structures and hamiltonian systems in scales of hilbert spaces,
20#
發(fā)表于 2025-3-25 02:46:35 | 只看該作者
Statement of the main theorem and its consequences,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 22:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶川县| 临湘市| 赣榆县| 平罗县| 江西省| 凌云县| 西乡县| 当雄县| 庄浪县| 海门市| 建宁县| 射阳县| 安义县| 遵义县| 汶川县| 金溪县| 交口县| 会东县| 托里县| 永仁县| 明光市| 遂平县| 洛南县| 定陶县| 芮城县| 乌审旗| 蓝田县| 天柱县| 湘潭市| 舒城县| 南丹县| 开平市| 松江区| 鄂托克旗| 静海县| 太谷县| 太白县| 微山县| 石棉县| 石首市| 徐水县|