找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Near-Rings and Near-Fields; Proceedings of the C Yuen Fong,Carl Maxson,Leon Wyk Conference proceedings 2001 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 傷害
31#
發(fā)表于 2025-3-26 23:30:53 | 只看該作者
On Semi-Endomorphisms of Abelian Groupserated abelian groups. Specifically, characterizations of groups . are given when the semi-endomorphism nearring of . is the endomorphism rings of ., and when the semi-endomorphism nearring is the full transformation nearring .(.); and an explicit description of the semi-endomorphisms of finitely ge
32#
發(fā)表于 2025-3-27 01:29:49 | 只看該作者
The Almost Nilpotent Radical for Near Rings for near-rings has been treated in several non-equivalent, but related ways in the recent literature. We use the version due to K. Kaarli as basis to define the concept of a weakly special radical in near-rings. We show that the almost nilpotent radical is weakly special on the class . of all near-
33#
發(fā)表于 2025-3-27 08:50:49 | 只看該作者
-Primitive ideals in Matrix Near-Ringsis an intersection of .-primitive ideals of .. If . satisfies the descending chain condition for left ideals, then . is .-primitive. Examples of finite near-rings . exist such that s-primitive ideals of ..(.) are not necessarily of the form .* for .-primitive in ..
34#
發(fā)表于 2025-3-27 13:14:19 | 只看該作者
Essential ideals and ,-Subgroups in Near-Rings and the additive-group commutator . + . ? . ? ., while the symbol (.) will denote the distributor .(. + .)?.?., for all . ∈ .. Finally, if . be an .-module and . are non-empty subsets of ., we will define (. = . ∈ . : . ∈ . for all . ? ..
35#
發(fā)表于 2025-3-27 14:47:28 | 只看該作者
36#
發(fā)表于 2025-3-27 21:50:03 | 只看該作者
The Number of Isomorphism Classes of D. G. Near-Rings on the Generalized Quaternion Groups on .. and that all of these are in fact distributive. However, as Clay pointed out ([Cla74]), “nothing is said concerning the isomorphism of these 16.”.We show in this note that there are exactly 10 non-isomorphic d.g. near-rings on .. for . ≥ 4 and 6 if . = 3.
37#
發(fā)表于 2025-3-28 00:12:26 | 只看該作者
When is a centralizer near-ring isomorphic to a matrix near-ring? Part 2ubnear-ring of the centralizer near-ring ..(..). We find conditions such that .(..(.);.) is a proper subset of ..(..). Assuming both . and . are abelian we find conditions under which .(..(.);.) equals ..(..).
38#
發(fā)表于 2025-3-28 02:35:43 | 只看該作者
Topology and Primary ,-Groups arises and an adaptation of this is used throughout the paper. Topological features are studied and these are related to algebraic properties of the nearring. Many surprising results are obtained. The last part of the paper is concerned with showing, that with connectedness, direct decomposition im
39#
發(fā)表于 2025-3-28 10:05:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:21:08 | 只看該作者
On Semi-Endomorphisms of Abelian Groupserated abelian groups. Specifically, characterizations of groups . are given when the semi-endomorphism nearring of . is the endomorphism rings of ., and when the semi-endomorphism nearring is the full transformation nearring .(.); and an explicit description of the semi-endomorphisms of finitely generated abelian groups is given.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梅州市| 六枝特区| 广德县| 汾阳市| 宁河县| 泸州市| 贡山| 武穴市| 秭归县| 台前县| 班戈县| 青海省| 威宁| 仁怀市| 兴业县| 桑植县| 延寿县| 阿瓦提县| 鄱阳县| 新化县| 威海市| 确山县| 治县。| 亳州市| 丰原市| 长海县| 南靖县| 丹巴县| 延庆县| 武清区| 横山县| 尤溪县| 普格县| 三都| 卓资县| 广昌县| 南城县| 临邑县| 台江县| 蒙自县| 武胜县|