找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nature-Inspired Optimization Methodologies in Biomedical and Healthcare; Janmenjoy Nayak,Asit Kumar Das,Sheryl Brahnam Book 2023 The Edito

[復(fù)制鏈接]
樓主: Grant
21#
發(fā)表于 2025-3-25 06:17:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:58:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:24:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:12:47 | 只看該作者
25#
發(fā)表于 2025-3-25 23:46:11 | 只看該作者
1868-4394 es, and solutions to diversified healthcare issues.Presents .This book introduces a variety of well-proven and newly developed nature-inspired optimization algorithms solving a wide range of real-life biomedical and healthcare problems. Few solo and hybrid approaches are demonstrated in a lucid mann
26#
發(fā)表于 2025-3-26 01:48:04 | 只看該作者
27#
發(fā)表于 2025-3-26 07:03:57 | 只看該作者
28#
發(fā)表于 2025-3-26 09:15:15 | 只看該作者
,Optimized Gradient Boosting Tree-Based Model for Obesity Level Prediction from patient’s Physical Cobserved that patient’s Gender, Age, Height, Weight, and FHWO (Family history with Overweight) are the most influenced factors. This approach has been compared with other similar approaches and found to be efficient in predicting various obesity level of the patients.
29#
發(fā)表于 2025-3-26 16:38:01 | 只看該作者
30#
發(fā)表于 2025-3-26 20:02:21 | 只看該作者
Diabetes Twitter Classification Using Hybrid GSA,ative, and neutral using tweets on Twitter. It is observed from the results that the proposed approach produced better classification results compared to the existing approach. This work proved to be very effective in handling health tweets and accurate in classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
循化| 江城| 科技| 天全县| 和静县| 周至县| 武夷山市| 阜阳市| 宁晋县| 西和县| 红原县| 饶阳县| 北京市| 虞城县| 林口县| 福贡县| 诸城市| 太白县| 广丰县| 前郭尔| 修水县| 新密市| 汾西县| 社旗县| 眉山市| 巴林左旗| 石棉县| 永济市| 茶陵县| 习水县| 海盐县| 始兴县| 德令哈市| 洞头县| 阳谷县| 贵南县| 武安市| 武夷山市| 平度市| 修水县| 和平县|