找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013); Learning, Optimizati German Terrazas,Fernando E. B. Otero,Antonio D.

[復(fù)制鏈接]
樓主: 實(shí)體
11#
發(fā)表于 2025-3-23 11:24:39 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:04 | 只看該作者
13#
發(fā)表于 2025-3-23 18:48:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:14 | 只看該作者
Fitness Based Self Adaptive Differential Evolution, named as Fitness based Self Adaptive DE (.). The experiments on 16 well known test problems of different complexities show that the proposed strategy outperforms the basic DE and recent variants of DE, namely Self-adaptive DE (.) and Scale Factor Local Search DE (.) in most of the experiments.
15#
發(fā)表于 2025-3-24 04:49:59 | 只看該作者
A Cooperative Approach Using Ants and Bees for the Graph Coloring Problem,S1 (construction strategy) gives best results and is quite fast compared to other methods. Moreover, the parallel implementation of ACS reduces significantly the execution time. Finally, we show that the cooperation between ACS and MBO improves the results obtained separately by each algorithm.
16#
發(fā)表于 2025-3-24 09:42:33 | 只看該作者
Artificial Bee Colony Training of Neural Networks,pplied, we conclude that the ABC approach does perform very well on small problems, but the generalization performances achieved are only significantly better than standard BP on one out of six datasets, and the training times increase rapidly as the size of the problem grows.
17#
發(fā)表于 2025-3-24 10:51:12 | 只看該作者
Nonlinear Optimization in Landscapes with Planar Regions,for descendent functions and more exploration for planar functions. Preliminary results show that the proposed hybrid algorithm finds better results than PSO and Monte Carlo techniques in isolation for ten well-known test functions.
18#
發(fā)表于 2025-3-24 16:15:06 | 只看該作者
Optimizing Neighbourhood Distances for a Variant of Fully-Informed Particle Swarm Algorithm, Swarm Optimization algorithm to successfully solve a problem. These configurations are often contrary to what people would design using their intuitions. This means that meta-optimization in this case can be used as a tool for scientific exploration as well as for practical utility.
19#
發(fā)表于 2025-3-24 21:47:15 | 只看該作者
Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments, after a given number of function evaluations with as few samples as possible. Exploiting old information in a discounted manner significantly improves the search, which is shown through numerical experiments performed using the moving peaks benchmark (MPB).
20#
發(fā)表于 2025-3-25 00:15:09 | 只看該作者
Using Base Position Errors in an Entropy-Based Evaluation Function for the Study of Genetic Code Adndicate that, when the proposed evaluation function is compared to the standard evaluation function based only on robustness, the difference between the fitness of the best hypothetical codes found by the GA and the fitness of the canonical genetic code is smaller.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
前郭尔| 响水县| 万盛区| 东宁县| 苍梧县| 乌拉特中旗| 平昌县| 临漳县| 建水县| 盐亭县| 安阳市| 磐安县| 宁安市| 安仁县| 湖州市| 邢台县| 高青县| 微博| 隆回县| 宜川县| 沅陵县| 达日县| 衡阳县| 新河县| 万载县| 黔东| 桦川县| 潼南县| 北辰区| 安岳县| 武威市| 汝州市| 江油市| 田林县| 星座| 长子县| 马鞍山市| 越西县| 新野县| 清镇市| 揭东县|