找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013); Learning, Optimizati German Terrazas,Fernando E. B. Otero,Antonio D.

[復制鏈接]
樓主: 實體
11#
發(fā)表于 2025-3-23 11:24:39 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:04 | 只看該作者
13#
發(fā)表于 2025-3-23 18:48:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:14 | 只看該作者
Fitness Based Self Adaptive Differential Evolution, named as Fitness based Self Adaptive DE (.). The experiments on 16 well known test problems of different complexities show that the proposed strategy outperforms the basic DE and recent variants of DE, namely Self-adaptive DE (.) and Scale Factor Local Search DE (.) in most of the experiments.
15#
發(fā)表于 2025-3-24 04:49:59 | 只看該作者
A Cooperative Approach Using Ants and Bees for the Graph Coloring Problem,S1 (construction strategy) gives best results and is quite fast compared to other methods. Moreover, the parallel implementation of ACS reduces significantly the execution time. Finally, we show that the cooperation between ACS and MBO improves the results obtained separately by each algorithm.
16#
發(fā)表于 2025-3-24 09:42:33 | 只看該作者
Artificial Bee Colony Training of Neural Networks,pplied, we conclude that the ABC approach does perform very well on small problems, but the generalization performances achieved are only significantly better than standard BP on one out of six datasets, and the training times increase rapidly as the size of the problem grows.
17#
發(fā)表于 2025-3-24 10:51:12 | 只看該作者
Nonlinear Optimization in Landscapes with Planar Regions,for descendent functions and more exploration for planar functions. Preliminary results show that the proposed hybrid algorithm finds better results than PSO and Monte Carlo techniques in isolation for ten well-known test functions.
18#
發(fā)表于 2025-3-24 16:15:06 | 只看該作者
Optimizing Neighbourhood Distances for a Variant of Fully-Informed Particle Swarm Algorithm, Swarm Optimization algorithm to successfully solve a problem. These configurations are often contrary to what people would design using their intuitions. This means that meta-optimization in this case can be used as a tool for scientific exploration as well as for practical utility.
19#
發(fā)表于 2025-3-24 21:47:15 | 只看該作者
Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments, after a given number of function evaluations with as few samples as possible. Exploiting old information in a discounted manner significantly improves the search, which is shown through numerical experiments performed using the moving peaks benchmark (MPB).
20#
發(fā)表于 2025-3-25 00:15:09 | 只看該作者
Using Base Position Errors in an Entropy-Based Evaluation Function for the Study of Genetic Code Adndicate that, when the proposed evaluation function is compared to the standard evaluation function based only on robustness, the difference between the fitness of the best hypothetical codes found by the GA and the fitness of the canonical genetic code is smaller.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
寿光市| 梅州市| 泽普县| 无棣县| 循化| 朝阳县| 阿瓦提县| 达孜县| 韩城市| 合江县| 霞浦县| 洛扎县| 清丰县| 阿尔山市| 盐池县| 许昌市| 噶尔县| 高淳县| 岐山县| 宿州市| 通江县| 五大连池市| 保靖县| 格尔木市| 修武县| 灵武市| 澜沧| 勃利县| 深圳市| 西宁市| 吐鲁番市| 榆中县| 望奎县| 集安市| 包头市| 翁牛特旗| 临邑县| 越西县| 富蕴县| 康保县| 闽侯县|