找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nature Inspired Cooperative Strategies for Optimization (NICSO 2008); Natalio Krasnogor,María Belén Melián-Batista,David Book 2009 Springe

[復(fù)制鏈接]
查看: 39928|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:08:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)
編輯Natalio Krasnogor,María Belén Melián-Batista,David
視頻videohttp://file.papertrans.cn/663/662004/662004.mp4
概述Presents latest results in nature inspired cooperative strategies for optimization
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Nature Inspired Cooperative Strategies for Optimization (NICSO 2008);  Natalio Krasnogor,María Belén Melián-Batista,David Book 2009 Springe
描述The inspiration from Biology and the Natural Evolution process has become a research area within computer science. For instance, the description of the arti?cial neuron given by McCulloch and Pitts was inspired from biological observations of neural mechanisms; the power of evolution in nature in the diverse species that make up our world has been related to a particular form of problem solving based on the idea of survival of the ?ttest; similarly, - ti?cial immune systems, ant colony optimisation, automated self-assembling programming, membrane computing, etc. also have their roots in natural phenomena. The ?rst and second editions of the International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO), were held in Granada, Spain, 2006, and in Acireale, Italy, 2007, respectively. As in these two previous editions, the aim of NICSO 2008, held in Tenerife, Spain, was to provide a forum were the latest ideas and state of the art research related to nature inspired cooperative strategies for problem solving were discussed. The contributions collected in this book were strictly peer reviewed by at least three members of the international programme committee,
出版日期Book 2009
關(guān)鍵詞Cyc; algorithms; communication; evolution; evolutionary algorithm; genetic algorithm; genetic algorithms; m
版次1
doihttps://doi.org/10.1007/978-3-642-03211-0
isbn_softcover978-3-642-26034-6
isbn_ebook978-3-642-03211-0Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)影響因子(影響力)




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)影響因子(影響力)學(xué)科排名




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)網(wǎng)絡(luò)公開度




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)被引頻次




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)被引頻次學(xué)科排名




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)年度引用




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)年度引用學(xué)科排名




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)讀者反饋




書目名稱Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:09 | 只看該作者
Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)978-3-642-03211-0Series ISSN 1860-949X Series E-ISSN 1860-9503
板凳
發(fā)表于 2025-3-22 01:06:03 | 只看該作者
地板
發(fā)表于 2025-3-22 06:25:46 | 只看該作者
https://doi.org/10.1007/978-3-642-03211-0Cyc; algorithms; communication; evolution; evolutionary algorithm; genetic algorithm; genetic algorithms; m
5#
發(fā)表于 2025-3-22 09:10:40 | 只看該作者
6#
發(fā)表于 2025-3-22 16:24:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:44:31 | 只看該作者
Aerodynamic Wing Optimisation Using SOMA Evolutionary Algorithm,ed. We present a modern, high performance global optimisation algorithm, following with real engineering application results represented by set of evolutionary-designed wings which we developed in cooperation with a leading civil aircraft design bureau and manufacturer.
8#
發(fā)表于 2025-3-22 21:42:00 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:52 | 只看該作者
Discrete Particle Swarm Optimization Algorithm for Data Clustering,th the published results of Basic PSO (B-PSO) algorithm, Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Combinatorial Particle Swarm Optimization (CPSO) algorithm. The performance analysis demonstrates the effectiveness of the proposed algorithm in solving the partitional data clustering problems.
10#
發(fā)表于 2025-3-23 06:10:37 | 只看該作者
A Simple Distributed Particle Swarm Optimization for Dynamic and Noisy Environments, features as well as provides the optimum result tracking capability in dynamic environments. In this research, the DF1 multimodal dynamic environment generator proposed by Morrison and De Jong is used to evaluate the classic PSO, SDPSO and other two adaptive PSOs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌珠穆沁旗| 黄冈市| 阿瓦提县| 梁河县| 甘德县| 吴忠市| 开原市| 南涧| 扎鲁特旗| 正宁县| SHOW| 独山县| 南安市| 定襄县| 太白县| 宁海县| 西平县| 墨玉县| 兴安盟| 九江市| 榆中县| 山西省| 石柱| 阿克| 手机| 卫辉市| 武穴市| 浦江县| 张家港市| 东海县| 桦甸市| 山西省| 桃园县| 陇南市| 揭西县| 商水县| 郎溪县| 庆城县| 牡丹江市| 伽师县| 饶平县|