找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Scientific Language Processing and Research Knowledge Graphs; First International Georg Rehm,Stefan Dietze,Frank Krüger Conference

[復(fù)制鏈接]
樓主: Weber-test
41#
發(fā)表于 2025-3-28 15:11:59 | 只看該作者
RTaC: A Generalized Framework for?Toolinging intricate tool sequencing with conditional and iterative logic. This research not only sets a new benchmark for tooling efficiency in LLMs but also opens new avenues for the application of LLMs in complex problem-solving scenarios, heralding a significant leap forward in the functionality and versatility of LLMs across diverse domains.
42#
發(fā)表于 2025-3-28 19:49:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:42:20 | 只看該作者
The Effect of?Knowledge Graph Schema on?Classifying Future Research Suggestionsves state of the art performance when combined with pretrained embeddings. Overall, we observe that schemas with limited variation in the resulting node degrees and significant interconnectedness lead to the best downstream classification performance.
44#
發(fā)表于 2025-3-29 03:51:44 | 只看該作者
45#
發(fā)表于 2025-3-29 09:05:13 | 只看該作者
46#
發(fā)表于 2025-3-29 14:39:03 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:29 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:08 | 只看該作者
OCR Cleaning of?Scientific Texts with?LLMs develop Large Language Models specially finetuned to correct OCR errors. We experimented with the mT5 model (both the mT5-small and mT5-large configurations), a Text-to-Text Transfer Transformer-based machine translation model, for the post-correction of texts with OCR errors. We compiled a paralle
49#
發(fā)表于 2025-3-30 01:33:47 | 只看該作者
RTaC: A Generalized Framework for?Toolinghe dynamic selection and sequencing of tools in response to complex queries. Addressing this, we introduce Reimagining Tooling as Coding (RTaC), a groundbreaking framework that transforms tool usage into a coding paradigm. Inspired by recent advancements [.], RTaC conceptualizes tools as Python func
50#
發(fā)表于 2025-3-30 06:01:48 | 只看該作者
Scientific Software Citation Intent Classification Using Large Language Modelshe introduction of new software systems. Despite its prevalence, there remains a significant gap in understanding how software is cited within the scientific literature. In this study, we offer a conceptual framework for studying software citation intent and explore the use of large language models,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华阴市| 鱼台县| 南汇区| 紫云| 潞城市| 综艺| 南通市| 榆社县| 牙克石市| 双峰县| 岳阳市| 大洼县| 紫云| 依安县| 岚皋县| 桃源县| 富蕴县| 林州市| 肃南| 沈丘县| 应用必备| 九龙县| 游戏| 沂源县| 邻水| 云和县| 青龙| 松阳县| 耒阳市| 河源市| 临城县| 汉寿县| 旬邑县| 长汀县| 闵行区| 郧西县| 余姚市| 家居| 马关县| 收藏| 东兰县|