找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Scientific Language Processing and Research Knowledge Graphs; First International Georg Rehm,Stefan Dietze,Frank Krüger Conference

[復(fù)制鏈接]
樓主: Weber-test
41#
發(fā)表于 2025-3-28 15:11:59 | 只看該作者
RTaC: A Generalized Framework for?Toolinging intricate tool sequencing with conditional and iterative logic. This research not only sets a new benchmark for tooling efficiency in LLMs but also opens new avenues for the application of LLMs in complex problem-solving scenarios, heralding a significant leap forward in the functionality and versatility of LLMs across diverse domains.
42#
發(fā)表于 2025-3-28 19:49:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:42:20 | 只看該作者
The Effect of?Knowledge Graph Schema on?Classifying Future Research Suggestionsves state of the art performance when combined with pretrained embeddings. Overall, we observe that schemas with limited variation in the resulting node degrees and significant interconnectedness lead to the best downstream classification performance.
44#
發(fā)表于 2025-3-29 03:51:44 | 只看該作者
45#
發(fā)表于 2025-3-29 09:05:13 | 只看該作者
46#
發(fā)表于 2025-3-29 14:39:03 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:29 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:08 | 只看該作者
OCR Cleaning of?Scientific Texts with?LLMs develop Large Language Models specially finetuned to correct OCR errors. We experimented with the mT5 model (both the mT5-small and mT5-large configurations), a Text-to-Text Transfer Transformer-based machine translation model, for the post-correction of texts with OCR errors. We compiled a paralle
49#
發(fā)表于 2025-3-30 01:33:47 | 只看該作者
RTaC: A Generalized Framework for?Toolinghe dynamic selection and sequencing of tools in response to complex queries. Addressing this, we introduce Reimagining Tooling as Coding (RTaC), a groundbreaking framework that transforms tool usage into a coding paradigm. Inspired by recent advancements [.], RTaC conceptualizes tools as Python func
50#
發(fā)表于 2025-3-30 06:01:48 | 只看該作者
Scientific Software Citation Intent Classification Using Large Language Modelshe introduction of new software systems. Despite its prevalence, there remains a significant gap in understanding how software is cited within the scientific literature. In this study, we offer a conceptual framework for studying software citation intent and explore the use of large language models,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶县| 普格县| 诏安县| 旌德县| 张家港市| 万全县| 太原市| 柳州市| 长顺县| 大同市| 河源市| 清新县| 宁强县| 屏东县| 洪洞县| 洛川县| 揭东县| 繁峙县| 上思县| 镇远县| 南江县| 腾冲县| 体育| 博罗县| 永清县| 咸丰县| 密山市| 临潭县| 常熟市| 西宁市| 交口县| 齐河县| 云阳县| 扎兰屯市| 井冈山市| 随州市| 宜宾县| 梁平县| 玉溪市| 罗江县| 新化县|