找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing – IJCNLP 2004; First International Keh-Yih Su,Jun’ichi Tsujii,Oi Yee Kwong Conference proceedings 2005 Springe

[復制鏈接]
樓主: exposulate
21#
發(fā)表于 2025-3-25 05:50:43 | 只看該作者
Combining Labeled and Unlabeled Data for Learning Cross-Document Structural Relationshipsucture Theory (CST), this paper describes an empirical study that classifies CST relationships between sentence pairs extracted from topically related documents, exploiting both labeled and unlabeled data. We investigate a binary classifier for determining existence of structural relationships and a
22#
發(fā)表于 2025-3-25 11:07:16 | 只看該作者
Parsing Mixed Constructions in a Type Feature Structure Grammars computational analyses. Various theoretical approaches have been proposed to solve this puzzle, but they all have ended up abandoning or modifying fundamental theory-neutral desiderata such as endocentricity (every phrase has a head), lexicalism (no syntactic rule refers to the word-internal struc
23#
發(fā)表于 2025-3-25 12:16:29 | 只看該作者
Iterative CKY Parsing for Probabilistic Context-Free Grammarsedges produced during parsing, which results in more efficient parsing. Since pruning is done by using the edge’s inside Viterbi probability and the upper-bound of the outside Viterbi probability, this algorithm guarantees to output the exact Viterbi parse, unlike beam-search or best-first strategie
24#
發(fā)表于 2025-3-25 17:13:56 | 只看該作者
Causal Relation Extraction Using Cue Phrase and Lexical Pair Probabilitiesmade use of causal patterns such as causal verbs. We concentrate on the information obtained from other causal event pairs. If two event pairs share some lexical pairs and one of them is revealed to be causally related, the causal probability of another event pair tends to increase. We introduce the
25#
發(fā)表于 2025-3-25 21:27:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:28 | 只看該作者
27#
發(fā)表于 2025-3-26 06:10:35 | 只看該作者
Chinese Named Entity Recognition Based on Multilevel Linguistic Featureshe advantages of character-based and word-based models. From experiments on a large-scale corpus, we show that significant performance enhancements can be obtained by integrating various linguistic information (such as Chinese word segmentation, semantic types, part of speech, and named entity trigg
28#
發(fā)表于 2025-3-26 11:43:06 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:43 | 只看該作者
30#
發(fā)表于 2025-3-26 19:32:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黄浦区| 德保县| 称多县| 三台县| 九龙城区| 水富县| 临漳县| 肇州县| 寻乌县| 阳泉市| 中卫市| 民权县| 霸州市| 九寨沟县| 汝阳县| 玉屏| 十堰市| 姚安县| 扬州市| 宁南县| 民和| 高邑县| 禄丰县| 贡山| 大洼县| 田东县| 黎平县| 师宗县| 乌拉特后旗| 广南县| 喀什市| 界首市| 勐海县| 泾川县| 泊头市| 邵武市| 筠连县| 云南省| 禄丰县| 青川县| 武冈市|